Zhang, J.; Tasan, C. C.; Lai, M.; Springer, H.; Raabe, D.: Microstructural and Mechanical Characterization of Cold Work Effects in GUM Metal. 9th International Conference on Advances in Experimental Mechanics, Cardiff, UK (2013)
Springer, H.; Kostka, A.: Verbinden von hochfestem Stahl mit einer Aluminiumlegierung durch Rührreibschweißen. 4. GKSS Workshop, Geesthacht, Germany (2009)
Belde, M. M.; Springer, H.; Inden, G.; Raabe, D.: Tailoring multi-phase steel microstructures by controlling local chemical gradients. MSE 2014, Darmstadt, Germany (2014)
Lai, M.; Tasan, C. C.; Zhang, J.; Grabowski, B.; Huang, L.; Springer, H.; Raabe, D.: ω phase accommodated nano-twinning mechanism in Gum Metal: An ab initio study. 3rd International Workshop on Physics Based Material Models and Experimental Observations: Plasticity and Creep, Cesme/Izmir, Turkey (2014)
Springer, H.: A novel roll bonding methodology for the cross-scale analysis of phase properties and interac-tions in multiphase structural materials. MSE 2014, Darmstadt, Germany (2014)
Springer, H.; Kostka, A.: Verbinden von hochfestem Stahl mit einer Aluminiumlegierung durch Rührreibschweißen. 4. GKSS Workshop, Geesthacht, Germany (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…