Shelyug, A.; Pauna, H.; Springer, H.; Souza Filho, I. R.: Puppet Strings of Hydrogen Plasma Reduction of Iron Ores: The Impact of Process Parameters on Plasma Properties and Reduction Kinetics. Metallurgical and Materials Transactions B 56 (5), pp. 5232 - 5245 (2025)
Pauna, H.; Souza Filho, I. R.; Kulse, M.; Jovičević-Klug, M.; Springer, H.; Huttula, M.; Fabritius, T.; Raabe, D.: In Situ Observation of Sustainable Hematite-Magnetite-Wustite-Iron Hydrogen Plasma Reduction. Metallurgical and Materials Transactions B 56 (4), pp. 3938 - 3949 (2025)
Tanure, L.; Patterer, L.; Balakumar, S.; Fekete, M.; Mráz, S.; Karimi Aghda, S.; Hans, M.; Schneider, J. M.; Springer, H.: A novel concept for self-healing metallic structural materials: Internal soldering of damage using low melting eutectics. Materials & Design 252, 113821 (2025)
Gathmann, M.; Moisi, D.; Springer, H.: Coarsening mechanism of M2B-borides and their effect on the mechanical properties of high modulus steels. Materials & Design 247, 113411 (2024)
Gathmann, M.; Tönnißen, N.; Baron, C.; Kostka, A.; Steinbacher, M.; Springer, H.: Surface hardening of high modulus steels through carburizing and nitriding: First insights into microstructure property relationships. Surface and Coatings Technology 494 (Part 1), 131354 (2024)
Pauna, H.; Ernst, D.; Zarl, M.; Souza Filho, I. R.; Kulse, M.; Büyükuslu, Ö.; Jovičević-Klug, M.; Springer, H.; Huttula, M.; Schenk, J.et al.; Fabritius, T.; Raabe, D.: The Optical Spectra of Hydrogen Plasma Smelting Reduction of Iron Ore: Application and Requirements. Steel Research International 95 (8), 2400028 (2024)
Springer, H.; Souza Filho, I. R.; Choisez, L.; Zarl, M. A.; Quick, C.; Horn, A.; Schenk, J.: Iron ore wires as consumable electrodes for the hydrogen plasma smelting reduction in future green steel production. Sustainable Materials and Technologies 39, e00785 (2024)
Fantin, A.; Maria Manzoni, A.; Springer, H.; Darvishi Kamachali, R.; Maaß, R.: Local lattice distortions and chemical short-range order in MoNbTaW. Materials Research Letters 12 (5), pp. 346 - 354 (2024)
Souza Filho, I. R.; Ma, Y.; Raabe, D.; Springer, H.: Fundamentals of Green Steel Production: On the Role of Gas Pressure During Hydrogen Reduction of Iron Ores. JOM-Journal of the Minerals Metals & Materials Society 75, pp. 2274 - 2286 (2023)
Pinson, M.; Springer, H.; Depover, T.; Verbeken, K.: The role of cementite on the hydrogen embrittlement mechanism in martensitic medium-carbon steels. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 859, 144204 (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…