Bieler, T. R.; Crimp, M. A.; Yang, Y.; Wang, L.; Eisenlohr, P.; Mason, D. E.; Liu, W.; Ice, G. E.: Strain Heterogeneity and Damage Nucleation at Grain Boundaries during Monotonic Deformation in Commercial Purity Titanium. Journal of Microscopy 61 (12), pp. 45 - 52 (2009)
Bieler, T. R.; Eisenlohr, P.; Roters, F.; Kumar, D.; Mason, D. E.; Crimp, M. A.; Raabe, D.: The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals. International Journal of Plasticity 25 (9), pp. 1655 - 1683 (2009)
Eisenlohr, P.; Milička, K.; Blum, W.: Dislocation glide velocity in creep of Mg-alloys derived from dip tests. Materials Science and Engineering A 510-511, pp. 393 - 397 (2009)
Eisenlohr, P.; Tjahjanto, D. D.; Hochrainer, T.; Roters, F.; Raabe, D.: Comparison of texture evolution in fcc metals predicted by various grain cluster homogenization schemes. International Journal of Materials Research 100 (4), pp. 500 - 509 (2009)
Kumar, P.; Kassner, M. E.; Blum, W.; Eisenlohr, P.; Langdon, T. G.: New observations on high-temperature creep at very low stresses. Materials Science and Engineering A 510-511, pp. 20 - 24 (2009)
Eisenlohr, P.; Sadrabadi, P.; Blum, W.: Quantifying the distributions of dislocation spacings and cell sizes. Journal of Materials Science 43, pp. 2700 - 2707 (2008)
Kumar, D.; Bieler, T. R.; Eisenlohr, P.; Mason, D. E.; Crimp, M. A.; Roters, F.; Raabe, D.: On Predicting Nucleation of Microcracks Due to Slip-Twin Interactions at Grain Boundaries in Duplex gamma-TiAl. Journal of Engineering and Materials Technology 130 (02), pp. 021012-1 - 021012-12 (2008)
Zeng, X. H.; Eisenlohr, P.; Blum, W.: Modelling the transition from strengthening to softening due to grain boundaries. Material Science and Engineering A 483-484, pp. 95 - 98 (2008)
Tjahjanto, D. D.; Roters, F.; Eisenlohr, P.: Iso-Work-Rate Weighted-Taylor Homogenization Scheme for Multiphase Steels Assisted by Transformation-induced Plasticity Effect. Steel Research International 78 (10/11), pp. 777 - 783 (2007)
Eisenlohr, P.; Blum, W.: Bridging steady-state deformation behavior at low and high temperature by considering dislocation dipole annihilation. Material Science and Engineering A 400 - 401, pp. 175 - 181 (2005)
Eisenlohr, P.; Winning, M.; Blum, W.: Migration of subgrain boundaries under stress in bi- and multi-granular structures. Physica Status Solidi 200 (2), pp. 339 - 345 (2003)
Roters, F.; Eisenlohr, P.; Bieler, T. R.; Raabe, D.: Crystal Plasticity Finite Element Methods in Materials Science and Engineering. Wiley-VCH, Weinheim (2010), 197 pp.
Shanthraj, P.; Diehl, M.; Eisenlohr, P.; Roters, F.; Raabe, D.: Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. In: Handbook of Mechanics of Materials, pp. 1347 - 1372 (Eds. Hsueh, C.-H.; Schmauder, S.; Chen, C.-S.; Chawla, K. K.; Chawla, N. et al.). Springer, Singapore (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…