Schwarz, T.; Hsu, Y.-L.; Dumont, M.; Garcia-Giner, V.; Jung, C.; Porter, A.; Gault, B.: Atom Probe Tomography - a new approach to provide new insights into the interfacial reaction at the liquid-solid interface on the atomic scale. Institute Seminar FAU Erlangen-Nuremberg, Department of Materials Science, Erlangen-Nuremberg, Germany (2025)
Schwarz, T.: Improvement in data quality of biominerals by in-situ metallic coating of APT specimens. Atom Probe Tomography & Microscopy (APT&M) 2025, Chennai, India (2025)
Schwarz, T.: Atom Probe Tomography - the ability to analyse materials with 3D compositional mapping at near atomic resolution. Seminar Frauenhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Dresden, Germany (2025)
Schwarz, T.: Atom probe tomography - a new approach to understand corrosion mechanisms at liquid-solid interface on the near-atomic scale. Institute for Bulidng Materials Seminar, ETH Zurich, Zurich, Switzerland (2025)
Schwarz, T.; Hsu, Y.-L.; Dumont, M.; Garcia-Giner, V.; Jung, C.; Porter, A.; Gault, B.: Atom probe tomography – a new technique to understand biominerals/materials on the atomic scale. 8th BioMAT 2025 - Symposium on Biomaterials and Related Areas, Weimar, Germany (2025)
Schwarz, T.: Cryo-APT opens up new possibilities in materials analysis. From the atom to the bulk: Materials characterization with CAMECA, Gatan, and EDAX user-day, Weiterstadt, Germany (2025)
Woods, E.; Aota, L. S.; Schwarz, T.; Kim, S.-H.; Douglas, J. O.; Singh, M. P.; Gault, B.: In-situ cryogenic protective layers and metal coatings in cryogenic FIB. IMC20 - 20th International Microscopy Congress - Pre-congress workshop, Cryogenic Atom Probe Tomography, Busan, South Korea (2023)
Schwarz, T.: Atom probe tomography: from water to complex liquids to the application of studying liquid-solid interfaces at the near atomic level. APT&M 23, Leuven, Belgium (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…