Khorrami, M. S.; Mianroodi, J. R.; Svendsen, B.: Finite-deformation phase-field microelasticity with application to dislocation core and reaction modeling in fcc crystals. Journal of the Mechanics and Physics of Solids 164, 104897 (2022)
Gierden, C.; Kochmann, J.; Waimann, J.; Svendsen, B.; Reese, S.: A Review of FE-FFT-Based Two-Scale Methods for Computational Modeling of Microstructure Evolution and Macroscopic Material Behavior. Archives of Computational Methods in Engineering 29, pp. 4115 - 4135 (2022)
Gierden, C.; Waimann, J.; Svendsen, B.; Reese, S.: A geometrically adapted reduced set of frequencies for a FFT-based microstructure simulation. Computer Methods in Applied Mechanics and Engineering 386, 114131 (2021)
Gierden, C.; Waimann, J.; Svendsen, B.; Reese, S.: FFT-based simulation using a reduced set of frequencies adapted to the underlying microstructure. Computer Methods in Materials Science 21 (1), pp. 51 - 58 (2021)
Shanthraj, P.; Liu, C.; Akbarian, A.; Svendsen, B.; Raabe, D.: Multi-component chemo-mechanics based on transport relations for the chemical potential. Computer Methods in Applied Mechanics and Engineering 365, 113029 (2020)
Mianroodi, J. R.; Svendsen, B.: Effect of Twin Boundary Motion and Dislocation-Twin Interaction on Mechanical Behavior in Fcc Metals. Materials 13 (10), 2238 (2020)
Alipour, A.; Reese, S.; Svendsen, B.; Wulfinghoff, S.: A grain boundary model considering the grain misorientation within a geometrically nonlinear gradient-extended crystal viscoplasticity theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476 (2235), 20190581 (2020)
Svendsen, B.: Constitutive relations for polar continua based on statistical mechanics and spatial averaging. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476 (2233), 20190407 (2020)
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
Enabling a ‘hydrogen economy’ requires developing fuel cells satisfying economic constraints, reasonable operating costs and long-term stability. The fuel cell is an electrochemical device that converts chemical energy into electricity by recombining water from H2 and O2, allowing to generate environmentally-friendly power for e.g. cars or houses…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
In this project, we work on a generic solution to design advanced high-entropy alloys (HEAs) with enhanced magnetic properties. By overturning the concept of stabilizing solid solutions in HEAs, we propose to render the massive solid solutions metastable and trigger spinodal decomposition. The motivation for starting from the HEA for this approach…