Brognara, A.: Design of ZrCu thin film metallic glasses with tailored mechanical properties through control of composition and nanostructure. Dissertation, RUB Bochum, Bochum, Germany (2025)
Hosseinabadi, R.: Dislocation transmission through coherent and incoherent twin boundaries in copper at the micron scale. Dissertation, Ruhr University Bochum (2024)
Patil, P.: Influence of plastic anisotropy on the deformation behaviour of Austenitic stainless-steel during single micro-asperity wear. Dissertation, Ruhr-Uiversität-Bochum (2023)
Rao, J.: Hydrogen effects on the mechanical behaviour of FeCr alloys investigated by in-situ nanoindentation. Dissertation, Ruhr-Universität Bochum (2023)
Jentner, R.: Phase identification and micromechanical characterization of an advanced high-strength low-alloy steel. Dissertation, Ruhr-Universität Bochum (2023)
Ahmad, S.: Fundamental investigation of the atomic structures of [111] tilt grain boundaries, their defects and segregation behaviour in pure and alloyed Al. Dissertation, Ruhr-Universität Bochum (2023)
Oellers, T.: Development of combinatorial methods to tailor electrical and mechanical properties of Cu-based thin-film structures. Dissertation, Ruhr-Universität Bochum (2022)
Distl, B.: Phase equilibria and phase transformations of Ti–Al–X (X=Nb, Mo, W) alloys for high-temperature structural applications between 700 and 1300 °C. Dissertation, Ruhr-Universität Bochum, Fakultät für Maschinenbau, Germany (2022)
Wolff-Goodrich, S.: Development of AlCrFeNiTi Compositionally Complex Alloys for High Temperature Structural Applications. Dissertation, Ruhr-Universität Bochum (2021)
Tian, C.: On the damage initiation in dual phase steels: Quantitative insights from in situ micromechanics. Dissertation, Ruhr-Universität Bochum (2021)
Evertz, S.: Quantum mechanically guided design of mechanical properties and topology of metallic glasses. Dissertation, Fakultät für Georessourcen und Materialtechnik, RWTH Aachen (2020)
Li, J.: Probing dislocation nucleation in grains and at Ʃ3 twin boundaries of Cu alloys by nanoindentation. Dissertation, Ruhr-Universität Bochum (2020)
Arigela, V. G.: Development and application of a high-temperature micromechanics stage with a novel temperature measurement approach. Dissertation, Ruhr-Universität Bochum (2020)
Luo, W.: Mechanical properties of the cubic and hexagonal NbCo2 Laves phases studied by micromechanical testing. Dissertation, Ruhr-Universität Bochum (2019)
In this project nanoprecipitates are designed via elastic misfit stabilization in Fe–Mn maraging steels by combining transmission electron microscopy (TEM) correlated atom probe tomography (APT) with ab initio simulations. Guided by these predictions, the Al content of the alloys is systematically varied...
Interstitial alloying can improve the mechanical properties of high-entropy alloys (HEAs). In some cases, the interstitial-alloying impact is very different from those in conventional alloys. We investigate the effect of interstitial alloying in fcc CrMnFeCoNi HEA as well as bcc refractory HEAs, particularly focusing on the solution energies and…
The nano-structure of surfaces influences the interactions and reactions occurring on it, which has strong impacts for applications in diverse fields, such as wetting phenomena, electrochemistry or biotechnology. We study these nanoscale structures on functional interfaces by nano-spectroscopy. Furthermore we try to understand their influence on…
Scandium-containing aluminium alloys are currently attracting interest as candidates for high-performance aerospace structural materials due to their outstanding combination of strength, ductility and corrosion resistance. Strengthening is achieved by precipitation of Al3Sc-particles upon ageing heat treatment.
Within the EU project „ADVANCE - Sophisticated experiments and optimisation to advance an existing CALPHAD database for next generation TiAl alloys”, MPIE collaborated with Thermocalc-Software AB, Stockholm, Montanuniversität Leoben and Helmholtz-Zentrum Hereon, Geesthacht. At MPIE the focus lay on the production and heat treatments of model alloys…
The promising mechanical properties of metallic glasses (MG) such as high hardness, yield strength, and toughness [1] are desirable to exploit for structural applications. Monolithic MGs lack grains and grain boundaries; thus, the mechanical properties of MGs are depending on the chemistry as well as processing and testing conditions. However…
Multiple Exciton Generation (MEG) is a promising pathway towards surpassing the Shockley-Queisser limit in solar energy conversion efficiency, where an incoming photon creates a high energy exciton, which then decays into multiple excitons.
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…