Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i/DPI Project Meeting, Delft, The Netherlands (2009)
Salgin, B.; Rohwerder, M.: A New Approach to Determine Ion Mobility Coefficients for Delamination Scenarios. electrochem09 and 50th Corrosion Science Symposium, Manchester, UK (2009)
Salgin, B.; Rohwerder, M.: A New Approach to Determine Ion Mobility Coefficients for Delamination Scenarios. 60th Annual Meeting of the International Meeting of the International Society of Electrochemistry, Beijing, China (2009)
Salgin, B.; Rohwerder, M.: Effects of Semiconducting Properties of Surface Oxide on the Delamination at the Polymer/Zinc Interface. SurMat Seminar, Kleve, Germany (2008)
Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i Conference 2011, Noordwijkerhout, The Netherlands (2011)
Salgin, B.; Rohwerder, M.: Scanning Kelvin Probe (SKP) as a tool for monitoring ion mobility on insulators. M2i Conference 2009, Noordwijkerhout, The Netherlands (2009)
Salgin, B.; Rohwerder, M.: Effects of the Semiconducting Properties of Surface Oxide on the Delamination at the Polymer/Metal Interface. 2nd International IMPRS-SurMat Workshop, Bochum, Germany (2008)
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.