Tjahjanto, D. D.; Eisenlohr, P.; Roters, F.: Relaxed grain cluster (RGC) scheme for polycrystals: Model formulation and solution strategy. Computational Mechanics of Polycrystals (CMCn) Workshop 2010, Bad Honnef, Germany (2010)
Eisenlohr, P.; Kords, C.; Roters, F.; Raabe, D.: A non-local crystal plasticity model based on polar dislocation densities. 16th Int. Symp. on Plasticity and Its Current Applications, St. Kitts, St. Federation of Saint Kitts and Nevis (2010)
Eisenlohr, P.; Tjahjanto, D. D.; Roters, F.; Raabe, D.: Coarse-graining of polycrystal plasticity with the Relaxed Grain Cluster scheme. Seminar des Instituts für Technische Mechanik, Karlsruher Institut für Technologie, Karlsruhe, Germany (2009)
Roters, F.; Demir, E.; Eisenlohr, P.: On the calculation of the geometrically necessary dislocation density in crystal plasticity FEM models. 1st International Conference on Material Modelling (ICMM 1), Dortmund, Germany (2009)
Tjahjanto, D. D.; Roters, F.; Eisenlohr, P.: Application of the relaxed grain cluster homogenization scheme to deep drawing simulation of dual-phase steel. 1st International Conference on Material Modelling (ICMM 1), Dortmund, Germany (2009)
Zambaldi, C.; Roters, F.; Zaefferer, S.; Raabe, D.: Crystal plasticity modeling for property extraction and the microstructure properties relation of intermetallic -TiAl nased alloys. 1st International Conference on Material Modelling (ICMM 1), Dortmund, Germany (2009)
Peranio, N.; Schulz, S.; Li, Y. J.; Roters, F.; Raabe, D.; Masimov, M.; Springub, G.: Processing of dual-phase steel for automotive applications: Microstructure and texture evolution during annealing and numerical simulation by cellular automata. Euromat 2009 (European Congress and Exhibition on Advanced Materials and Processes), Glasgow, UK (2009)
Eisenlohr, P.; Tjahjanto, D. D.; Roters, F.; Raabe, D.: Analysis of the relaxed grain cluster polycrystal homogenization scheme in texture prediction. 15th International Conference on the Strength of Materials (ICSMA-15), Dresden, Germany (2009)
Ma, D.; Raabe, D.; Roters, F.; Maaß, R.; van Swygenhoven, H.: Crystal plasticity finite element study on small scale plasticity of micropillars. 15th International Conference on the Strength of Materials (ICSMA-15), Dresden, Germany (2009)
Zambaldi, C.; Roters, F.; Raabe, D.: Crystal plasticity modeling and experiments for the microstructureproperties relationship in gamma TiAl based alloys. 15th International Conference on the Strength of Materials (ICSMA-15), Dresden, Germany (2009)
Ma, D.; Raabe, D.; Roters, F.; Maaß, R.; Van Swygenhoven, H.: Crystal Plasticity finite element method study on small scale plasticity. Deutsche Physikalische Gesellschaft 2009, Dresden, Germany (2009)
Roters, F.; Hantcherli, L.; Eisenlohr, P.: Incorporating Twinning into the Crystal Plasticity Finite Element Method. International Plasticity Conference 2009, Virgin Islands, USA (2009)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.