Torres, E.; Blumenau, A. T.; Biedermann, P. U.: Mechanism for phase transitions and vacancy island formation in alkylthiol/Au(111)self-assembled monolayers based on adatom and vacancy-induced reconstructions. Physical Review B 79 (7), pp. 075440-1 - 075440-6 (2009)
Pengel, S.; Niu, F.; Nayak, S.; Tecklenburg, S.; Chen, Y.-H.; Ebbinghaus, P.; Schulz, R.; Yang, L.; Biedermann, P. U.; Gygi, F.et al.; Schmid, R.; Galli, G.; Wippermann, S. M.; Erbe, A.: Oxygen reduction and water at the semiconductor/solution interface probed by stationary and time-resolved ATR-IR spectroscopy coupled to electrochemical experiments and DFT calculations. In: Program of the 8th International Conference on Advanced Vibrational Spectroscopy (ICAVS) – Oral Abstracts, pp. 130 - 131 (Eds. Lendl, B.; Koch, C.; Kraft, M.; Ofner, J.; Ramer, G.). 8th International Conference on Advanced Vibrational Spectroscopy (ICAVS), Vienna, Austria, July 12, 2015 - July 17, 2015. (2015)
Berezkin, A. V.; Biedermann, P. U.: Multiscale simulation of polyurethane network. World Polymer Congress 2012, Blacksburg, Virginia Tech, USA, June 24, 2012 - June 29, 2012. (2012)
Berezkin, A. V.; Biedermann, P. U.; Auer, A. A.: Mesoscale simulation of network formation and structure, combining molecular dynamics and kinetic Monte Carlo approaches. European Polymer Congress 2011, Granada, Spain, June 26, 2011 - July 01, 2011. (2011)
Kenmoe, S.; Biedermann, P. U.: Water adsorption on non polar ZnO surfaces: from single molecules to multilayers. In APS March Meeting 2015, abstract #G8.011. APS March Meeting 2015 , San Antonio, TX, USA, March 02, 2015 - March 06, 2015. (2015)
Kenmoe, S.; Biedermann, P. U.: Water adsorption on non polar ZnO surfaces: from single molecules to multilayers. In DPG Spring Meeting 2015, Abstract: O14.12. DPG Spring Meeting 2015 , Berlin, Germany, March 16, 2015 - March 20, 2015. (2015)
Kenmoe, S.; Todorova, M.; Biedermann, P. U.; Neugebauer, J.: Impact of the vapour pressure of water on the equilibrium shape of ZnO nanoparticles: An ab-initio study. In APS March Meeting 2014, abstract #Q2.009. APS March Meeting 2014 , Denver, CO, USA, March 03, 2014 - March 07, 2014. (2014)
Kenmoe, S.; Todorova, M.; Biedermann, P. U.; Neugebauer, J.: Impact of the vapour pressure of water on the equilibrium shape of ZnO nanoparticles: An ab-initio study. In DPG Spring Meeting 2014, Abstract: O50.6. DPG Spring Meeting 2014 , Dresden, Germany, March 30, 2014 - April 04, 2015. (2014)
Biedermann, P. U.; Nayak, S.; Erbe, A.: The Mechanism of Electrochemical Oxygen Reduction: A Combined DFT and in-Situ ATR-IR Study on Model Semiconductor Surfaces Ge(100) and ZnO. 227th ECS Meeting, Chicago, IL, USA (2015)
Biedermann, P. U.; Nayak, S.; Erbe, A.: Catching intermediates of the oxygen reduction reaction in situ: Insights from electrochemical ATIR-IR and DFT. 112th Bunsentagung (Annual German Conference on Physical Chemistry), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (2013)
Biedermann, P. U.; Nayak, S.; Erbe, A.: Towards Understanding the Mechanism of the Electrochemical Oxygen Reduction: DFT Modeling and Spectroelectrochemical Validation. Pacific Rim Meeting on Electrochemical and Solid-State Science PRIME 2012 / ECS 222, Honolulu, HI, USA (2012)
Nayak, S.; Biedermann, P. U.; Stratmann, M.; Erbe, A.: In situ Electrochemical ATR-IR Investigation of the Oxygen Reduction on Germanium. 62nd Annual Meeting of the International Society of Electrochemistry, Niigata, Japan (2011)
Berezkin, A. V.; Biedermann, P. U.; Auer, A. A.: Mesoscale simulation of network formation and structure, combining molecular dynamics and kinetic Monte Carlo approaches. European Polymer Congress 2011, Granada, Spain (2011)
Berezkin, A. V.; Biedermann, P. U.: Simulation of polyurethane and water interac-tions with the ZnO surface: DFT and classical OPLS-AA force field calculation. 4-th World Congress on Adhesion and Related Phenomena, Arcachon, France 2010 (2010)
Biedermann, P. U.: Ab initio approaches to Solvation Free Energies and Single-Ion Chemical Potentials. Minisymposium "Challenges for Theory in Electrochemistry", MPI für Eisenforschung GmbH, Düsseldorf, Germany (2010)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Materials degradation due to wear and corrosion is a major issue that can lead to efficiency loss or even failure. As wear may accelerate corrosion and corrosion may accelerate wear, this interaction is of increasing interest in the wind, hydroelectric, oil and gas energy domains and in the bio-medical field.
In this project, the electrochemical and corrosion behavior of high entropy alloys (HEAs) have been investigated by combining a micro-electrochemical scanning flow cell (SFC) and an inductively coupled plasma mass spectroscopy (ICP-MS) element analysis.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
In this project, the hydrogen embrittlement mechanisms in several types of high-entropy alloys (HEAs) have been investigated through combined techniques, e.g., low strain rate tensile testing under in-situ hydrogen charging, thermal desorption spectroscopy (TDS),...
This project will aim at addressing the specific knowledge gap of experimental data on the mechanical behavior of microscale samples at ultra-short-time scales by the development of testing platforms capable of conducting quantitative micromechanical testing under extreme strain rates upto 10000/s and beyond.
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…