Kirchlechner, C.; Liegl, W.; Motz, C.; Dehm, G.: X-ray μLaue: A novel view on fatigue damage at the micron scale. ECI on Nanomechanical Testing 2013, Olhão (Algarve), Portugal (2013)
Kirchlechner, C.; Motz, C.; Dehm, G.: A novel view on fatigue damage at the micron scale by X-ray µLaue diffraction. GDRi CNRS MECANO General Meeting on the Mechanics of Nano-Objects, MPIE, Düsseldorf, Germany (2013)
Marx, V. M.; Kirchlechner, C.; Cordill, M. J.; Dehm, G.: Deformation behavior of a Cr interlayer buried under Cu films on polyimide. GDRi CNRS MECANO General Meeting on the Mechanics of Nano-Objects, MPIE, Düsseldorf, Germany (2013)
Schloegl, M.; Paulitsch, J.; Keckes, J.; Chordill, M. J.; Kirchlechner, C.; Mayrhofer, P. H.: In-situ Micro-fracture-test Investigations in the Influence of Structure and Phase Transformation of CrN/AlN Multilayer Coatings. 40th ICMCTF - International Conference on Metallurgical Coatings & Thin Films, San Diego, CA, USA (2013)
Peter, N. J.; Liebscher, C.; Kirchlechner, C.; Dehm, G.: Ag segregation induced nanofaceting transition of an asymmetric tilt grain boundary in Cu and its impact on plastic deformation mechanisms. PICO 2019, Vaals, The Netherlands (2019)
Molin, J.-B.; Renversade, L.; Micha, J. S.; Ulrich, O.; Kirchlechner, C.: 3D-Laue Micro Diffraction to Characterize Fatigue Damage in Bi-crystalline Micro Cantilevers. ECI Nanomechanical Testing in Materials Research and Development VII (ECI2019), Malaga, Spain (2019)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: Setup of a microscale high temperature loading rig for micro-fracture mechanics with a novel temperature measurement approach. Advanced nano-mechanical techniques for academic and industrial research, Aachen, Germany (2018)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: Temperature dependent mechanical characterization of sputtered Copper-Silver thin film tensile specimens produced by photolithography. Materials Chain International Conference, Bochum, Germany, Bochum, Germany (2018)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: High temperature mechanical characterization of Copper-Silver- and Copper-Zirconium thin film libraries produced by combinatorial materials synthesis approach. GDRi Mecano General School 2018, Cargese, Corsica, France (2018)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: High temperature mechanical characterization of Copper-Silver- and Copper-Zirconium thin film libraries produced by combinatorial materials synthesis approach. Gordon Research Seminar on Thin Film and Small Scale Mechanical Behavior (GRS) 2018, Lewiston, ME, USA (2018)
Li, J.; Dehm, G.; Kirchlechner, C.: Grain Boundaries acting as dislocation sources. Gordon Research Seminar "Thin Film & Small Scale Mechanical Behavior", Lewiston, ME, USA (2018)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Composition dependence of mechanical properties of cubic and hexagonal NbCo2 Laves phases. EMMC 16, European Mechanics of Material Conference, Nantes, France (2018)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…