Mayrhofer, K. J. J.: Online investigation of the stability of electrode materials by coupling of SFC - ICP-MS. Seminar Talk at University of Ulm, Ulm, Germany (2011)
Mayrhofer, K. J. J.: Catalysis in electrochemical reactors - Fundamental investigations for real applications. Seminar talk at Fritz-Haber-Institut der MPG, Berlin, Germany (2011)
Meier, J. C.; Galeano, C.; Katsounaros, I.; Topalov, A. A.; Schüth, F.; Mayrhofer, K. J. J.: Role of Support Interactions for Activity and Stability of Fuel Cell Catalysts. ACS 15th Annual Green Chemistry & Engineering Conference, Washington, D.C., USA (2011)
Mayrhofer, K. J. J.: Electrocatalysis of PEM fuel cell reactions – fundamental investigations for real applications. 9th European Symposium on Electrochemical Engineering, Chania, Greece (2011)
Mayrhofer, K. J. J.: Elektrochemische Hochdurchsatzuntersuchungen mit gekoppelter online Analytik. 4. Korrosionsschutz-Symposium - Korrosionsschutz durch Beschichtungen in Theorie und Praxis, Trent, Rügen (2011)
Mayrhofer, K. J. J.: IL-TEM for the investigation of nanoparticle corrosion. Seminar Talk at Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany (2011)
Mayrhofer, K. J. J.: Identical-Location Microscopy for the investigation of corrosion processes. 61st Annual Meeting of the International Society of Electrochemistry, Nice, France (2010)
Hodnik, N.; Dehm, G.; Mayrhofer, K. J. J.: Electrochemical water based in-situ TEM: case study of platinum based nanoparticles potential- and time-dependent changes. IAM Nano 2015 , Hamburg, Germany (2015)
Geiger, S.; Cherevko, S.; Mayrhofer, K. J. J.: Platinum dissolution in presence of chlorides. 3rd Ertl Symposium on Surface Analysis and Dynamics
, Berlin, Germany (2014)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.