Kim, O.; Friák, M.; Neugebauer, J.: Ab initio analysis of the carbon solubility limits in various iron allotropes. DPG Frühjahrstagung 2010, Regensburg, Germany (2010)
Friák, M.; Sob, M.; Kim, O.; Ismer, L.; Neugebauer, J.: Ab initio calculation of phase boundaries in iron along the bcc-fcc transformation path and magnetism of iron overlayers. Seminar at the Department of Materials Physics at Montan Universität Leoben, Leoben, Austria (2009)
Friák, M.; Sob, M.; Kim, O.; Ismer, L.; Neugebauer, J.: Ab initio study of the alpha-iron stability limits. Ab initio Description of Iron and Steel: Magnetism and Phase diagrams (ADIS 2008), Ringberg castle, Tegernsee, Germany (2008)
Kim, O.; Friák, M.; Neugebauer, J.: Ab initio analysis of the carbon solubility limits in various iron phases. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Kim, O.; Friák, M.; Neugebauer, J.: Ab-initio study of formation energies in steel and their relations to the solubility limits of carbon in austenite and ferrite. PAW workshop 2007, Goslar, Germany (2007)
Kim, O.; Friák, M.; Neugebauer, J.: Ab initio study of the carbon-carbon interaction in iron. Spring meeting of the German Physical Society (DPG), Regensburg, Germany (2007)
Friák, M.; Sob, M.; Kim, O.; Ismer, L.; Neugebauer, J.: First principles study of the alpha-iron stability limits. 448. Wilhelm und Else Heraeus-Seminar "Excitement in magnetism: Spin-dependent scattering and coupling of excitations in ferromagnets", Tegernsee, Ringberg, Germany (2009)
Friák, M.; Sob, M.; Kim, O.; Ismer, L.; Neugebauer, J.: First principles study of the alpha-iron stability limits. Ab initio Description of Iron and Steel: Magnetism and Phase diagrams (ADIS 2008), Ringberg Castle, Tegernsee, Germany (2008)
Kim, O.; Friák, M.; Neugebauer, J.: Ab-initio study of formation energies in steel and their relations to the solubility limits of carbon in austenite and ferrite. Multiscale Modeling of Condensed Matter, Sant Feliu de Guixols, Spain (2007)
Kim, O.: Ab-initio study of formation and interaction energies in steel and their relations to the solubility limit of carbon in austenite and ferrite. Master, RWTH-Aachen, Aachen, Germany (2007)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
A novel design with independent tip and sample heating is developed to characterize materials at high temperatures. This design is realized by modifying a displacement controlled room temperature micro straining rig with addition of two miniature hot stages.
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
Here, we aim to develop machine-learning enhanced atom probe tomography approaches to reveal chemical short/long-range order (S/LRO) in a series of metallic materials.
While Density Functional Theory (DFT) is in principle exact, the exchange functional remains unknown, which limits the accuracy of DFT simulation. Still, in addition to the accuracy of the exchange functional, the quality of material properties calculated with DFT is also restricted by the choice of finite bases sets.
The Atom Probe Tomography group in the Microstructure Physics and Alloy Design department is developing integrated protocols for ultra-high vacuum cryogenic specimen transfer between platforms without exposure to atmospheric contamination.
The structures of grain boundaries (GBs) have been investigated in great detail. However, much less is known about their chemical features, owing to the experimental difficulties to probe these features at the near-atomic scale inside bulk material specimens. Atom probe tomography (APT) is a tool capable of accomplishing this task, with an ability…