Computational Phase Studies

Computational Phase Studies

The research in this group is devoted to the physics of (meta)stable thermodynamic phases as well as transitions between them. The major vision is an ab initio based prediction of thermodynamic bulk phase diagrams, being directly related to many technologically relevant properties and processes in metals.

The research in the group is focused on the development and application of state-­of-­the-­art ab initio techniques employing density functional theory (DFT) in the following fields:

Ab initio derived (red lines) heat capacities (in kB) of Fe and Al based on accurate methods to determine all relevant contributions to the free energy.
  • The continuous improvement of ab initio based methods to calculate the critical contributions to the free energy of metals, their application to industrially relevant materials, and the combination of the results with thermodynamic databases [1,2].
  • The description and prediction of temperature and stress induced phase transitions and/or structural changes in shape memory alloys, steels and related materials [3].
  • The energetics and kinetics of alloying elements, impurities and defects, and their relevance for embrittlement phenomena, precipitation and ductility of materials [4].

All these aspects are strongly interlinked and - with free energies being at the heart of many materials science problems - are the basis for intensive collaborations with several groups within the MPIE and beyond.

Further reading

Go to Editor View