Nellessen, J.; Sandlöbes, S.; Raabe, D.: Low cycle fatigue in aluminum single and bi-crystals: On the influence of crystal orientation. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 668, pp. 166 - 179 (2016)
Nellessen, J.; Sandlöbes, S.; Raabe, D.: Effects of strain amplitude, cycle number and orientation on low cycle fatigue microstructures in austenitic stainless steel studied by electron channelling contrast imaging. Acta Materialia 87, pp. 86 - 99 (2015)
Nellessen, J.; Sandlöbes, S.; Raabe, D.: Effects of strain amplitude, cycle number and orientation on low cycle fatigue microstructures in fcc materials studied by Electron Channeling Contrast Imaging. TMS 2015 - 144th Annual Meeting & Exhibition, Orlando, FL, USA (2015)
Nellessen, J.; Sandlöbes, S.; Raabe, D.: Systematic Investigation of the Influence of Strain Amplitude, Orientation and Cycle Number on the Dislocation Structures Formed during Low Cycle Fatigue. MSE 2014, Darmstadt, Germany (2014)
Nellessen, J.; Sandlöbes, S.; Raabe, D.: Systematic and efficient investigation of the influences on the dislocation structures formed during low cycle fatigue in austenitic stainless steel. Euromat 2013, Sevilla, Spain (2013)
Nellessen, J.: Effects of strain amplitude, cycle number and orientation on low cycle fatigue microstructures in austenitic stainless steel and aluminum. Dissertation, RWTH Aachen, Aachen, Germany (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
To design novel alloys with tailored properties and microstructure, two materials science approaches have proven immensely successful: Firstly, thermodynamic and kinetic descriptions for tailoring and processing alloys to achieve a desired microstructure. Secondly, crystal defect manipulation to control strength, formability and corrosion…