Frommeyer, G.; Gnauk, J.; Frech, W.; Zeller, S.: Shape flow casting and in-rotating-liquid-spinning processes for the continuous production of wires and of high-strength and soft magnetic metallic fibres. ISIJ International 46 (12), pp. 1858 - 1868 (2006)
Zeller, S.; Gnauk, J.; Frommeyer, G.: Parameter studies on in-rotating-liquid spinning for rapidly solidified thin wires. In: Proceedings of the 5th Decennial International Conference on Solidification Processing, pp. 624 - 628 (Ed. Jones, H.). 5th Decennial International Conference on Solidification Processing, Sheffield, UK, July 23, 2007 - July 25, 2007. Department of Engineering Materials, University of Sheffield (2007)
Zeller, S.; Gnauk, J.; Frommeyer, G.; Schiefer, C.; Velleuer, J.; Kisker, E.: Processing of nanocrystalline and amorphous Fe–(Co)–B–Si thin wires for magnetic applications by using in-rotating-liquid-spinning. 2007 TMS Annual Meeting & Exhibition, Orlando, FL, USA, February 25, 2007 - March 01, 2007., (2007)
Zeller, S.; Gnauk, J.: The production of rapidly solidified thin wires using in-rotating-liquid spinning. Advanced Processing for Novel Functional Materials APNFM 2008, Dresden, Germany (2008)
Zeller, S.; Gnauk, J.; Frommeyer, G.: Direct casting and rapid solidification of CuAl SMS wires and characterisation of the microstructure. E-MRS 2007 Fall Meeting, Warsaw, Poland (2007)
Zeller, S.; Gnauk, J.: Processing of nanocrystalline and amorphous Fe–(Co)–B–Si thin wires for magnetic applications by using in-rotating-liquid-spinning. TMS Annual Meeting 2007, Orlando, FL, USA (2007)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.