Steinmetz, D.: A constitutive model of twin nucleation and deformation twinning in High-Manganese Austenitic TWIP steels. Dissertation, RWTH Aachen, Aachen, Germany (2013)
Takahashi, T.: On the growth and mechanical properties of non-oxide perovskites and the spontaneous growth of soft metal nanowhiskers. Dissertation, RWTH Aachen, Aachen, Germany (2013)
Hostert, C.: Towards designing elastic and magnetic properties of Co-based thin film metallic glasses. Dissertation, RWTH Aachen, Aachen, Germany (2012)
Britton, B.: Measurement of residual elastic strain and lattice rotations with high resolution electron backscatter diffraction. Dissertation, Oxford University, Oxford, UK (2011)
Song, J.: Microstructure and properties of interfaces formed by explosion cladding of Titanium to low Carbon steel. Dissertation, Ruhr-University Bochum, Bochum, Germany (2011)
Voß, S.: Mechanische Eigenschaften von Laves-Phasen in Abhängigkeit von Kristallstruktur und Zusammensetzung am Beispiel der Systeme Fe–Nb–Al und Co–Nb. Dissertation, RWTH Aachen, Aachen, Germany (2011)
Springer, H.: Fundamental Research into the Role of Intermetallic Phases in Joining of Aluminium Alloys to Steel. Dissertation, Ruhr-University Bochum, Bochum, Germany (2011)
Demir, E.: Constitutive modeling of fcc single crystals and experimental study of mechanical size effects. Dissertation, RWTH Aachen, Aachen, Germany (2010)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
We apply our novel potentiostat approach to study the chemical reactions that take place during initial corrosion at the water-Mg interface under anodic polarization. Based on the gained insight, we derive an atomistic model that explains the origin of the anodic hydrogen evolution.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Solid-liquid interfaces are at the heart of many problems of practical importance, such as water electrolysis and batteries, photo catalytic water splitting, electro-catalysis, or corrosion. Understanding the structures forming at surfaces of solids immersed in an aqueous electrolyte is, therefore, of particularly high interest. In this project, we…
Grain boundaries (GBs) are regions connecting adjacent crystals with different crystallographic orientations. GBs are a type of lattice imperfection, with their own structure and composition, and as such impact a material’s mechanical and functional properties. Structural motifs and phases formed at chemically decorated GBs can be of a transient…
ZnO is a wide band gap semiconductor which is of interest to such diverse areas of application as passivation layers on steel surfaces, catalysis, corrosion, adhesion, gas sensing, and micro- or optoelectronics. Understanding the surface structure and stoichiometry is of high practical interest and essential for any of the mentioned applications…
Recently developed dual-phase high entropy alloys (HEAs) exhibit both an increase in strength and ductility upon grain refinement, overcoming the strength-ductility trade-off in conventional alloys [1]. Metastability engineering through compositional tuning in non-equimolar Fe-Mn-Co-Cr HEAs enabled the design of a dual-phase alloy composed of…