Herrera, C.; Ponge, D.; Raabe, D.: Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability. Acta Materialia 59, pp. 4653 - 4664 (2011)
Herrera, C.; Ponge, D.; Raabe, D.: Characterization of the microstrcture, crystallographic texture and segregation of an as-cast duplex stainless steel slab. Steel Research International 79 (6), pp. 482 - 488 (2008)
Herrera, C.; Ponge, D.; Raabe, D.: Microstructural evolution during hot working of 1.4362 duplex stainless steel. In: Proceedings Book 2nd Inter. Symp. Steel Science ISSS 2009, pp. 199 - 202 (Ed. K, H. N.T.). Proceedings 2nd Inter. Symp. Steel Science ISSS 2009, Kyoto, Japan, October 21, 2009 - October 24, 2009. The Iron and Steel Institute of Japan, Japan (2009)
Herrera, C.; Ponge, D.; Raabe, D.: Influence of the initial microstructure on the hot deformation of duplex stainless steel. In: Science and Market , European Stainless Steel Conference, pp. 541 - 546. 6th European Stainless Steel Conference, Helsinki, Finland, June 10, 2008 - June 13, 2008. Jernkontoret, Stockholm, Sweden (2008)
Herrera, C.; Ponge, D.; Raabe, D.: Microstructure and texture of hot-rolled duplex stainless steel. In: TMP, International Conference on Thermomechanical Processing of Steels, pp. 1 - 10. Thermomechanical Processing of Steels, Padova, Italy, September 10, 2008 - September 12, 2008. Associazione Italiana di Metallurgia (AIM), Milano, Italy (2008)
Herrera, C.; Ponge, D.; Raabe, D.: Development of a high ductile lean duplex stainless steel. 2nd International Conference on Super-High Strength Steels SHSS, Peschiera del Garda, Italy (2009)
Herrera, C.; Ponge, D.; Raabe, D.: Hot workability of 1.4362 duplex stainless steel. Euromat 2009 (European Congress and Exhibition on Advanced Materials and Processes), Glasgow, Scotland, UK (2009)
Herrera, C.; Ponge, D.; Raabe, D.: Influence of the initial microstructure on the hot deformation of duplex stainless steel. 6th European Stainless Steel Conference, Helsinki, Finland (2008)
Herrera, C.; Ponge, D.; Raabe, D.: Microtexture Characterization of Duplex Stainless Steel after Hot Working. 15th International Conference on the Texture of Materials (ICOTOM 15), Carnegie Mellon University Center in Pittsburgh, PA, USA (2008)
Herrera, C.; Ponge, D.; Raabe, D.: Microstructural evolution during hot working of 1.4362 duplex stainless steel. 2nd International Symposium on Steel Science (ISSS 2009), Kyoto, Japan (2009)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...