© Max-Planck-Institut für Eisenforschung GmbH

Research Projects

We introduce here a new approach in which we strengthen a low-density solid solution matrix simultaneously by a dual-nanoprecipitation system containing both kappa-carbides and B2 particles. Since the conventional thermodynamic working point is not accessible to realize this dual-precipitation strategy, we designed a low-density (6.6 g/cm3) steel-type alloy, which uses merits of the recently introduced multi–principal element approach referred to as compositionally complex alloys (CCAs) or high-entropy alloys (HEAs).

more
In this project we study how Segregation Engineering can serve in the design of more robust and crack-free microstructures in Additive Manufacturing. More specific, we were able to reduce hot tearing in additive manufacturing of an Al x CoCrFeNi high-entropy alloy by grain boundary segregation engineering. more
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing. more
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications. more
In this project, we aim at significantly enhancing the strength-ductility combination of quinary high-entropy alloys (HEAs) with five principal elements by simultaneously introducing interstitial C/N and the transformation induced plasticity (TRIP) effect. Thus, a new class of alloys, namely, interstitially alloyed TRIP-assisted quinary (five-component) HEAs is being developed. more
In this project, we aim to understand the interstitial carbon effect on the recrystallization behavior of the equiatomic CoCrFeMnNi HEA and hence to tune the corresponding mechanical properties. more
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA. more
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ... more
In this project, a strategy of combining intermetallic phases and massive solid solutions is employed to design novel Refractory high-entropy alloys (RHEAs). more
In this project, we perform macro-/microscopic experiments and constitutive modelling to investigate the effects of stress amplitude and mean stress on the ratchetting strain and the overall cyclic behavior of interstitial high-entropy alloys (iHEAs)... more
In this project, we probe the invar effect in the high and medium entropy alloys over the huge unexplored compositional space. Combining experimental investigation (PPMS, EBSD, ECCI, APT and TEM) and theoretical calculation (DFT and Calphad)... more
In this project, we investigate the segregation behavior and complexions in the CoCrFeMnNi high-entropy alloys (HEAs). The structure and chemistry in the HEAs at varying conditions are being revealed systematically by combining multiple advanced techniques such as electron backscatter diffraction (EBSD) and atom probe tomography (APT). more
In this project, the hydrogen embrittlement mechanisms in several types of high-entropy alloys (HEAs) have been investigated through combined techniques, e.g., low strain rate tensile testing under in-situ hydrogen charging, thermal desorption spectroscopy (TDS),... more
In this project, the electrochemical and corrosion behavior of high entropy alloys (HEAs) have been investigated by combining a micro-electrochemical scanning flow cell (SFC) and an inductively coupled plasma mass spectroscopy (ICP-MS) element analysis. more
Go to Editor View