Research Projects

Header image 1589462236

Research Projects

Running Projects

 In this project, we reveal the subtle yet important interplay between the faceting of grain boundaries and their chemical decoration with solutes in an engineering Al-Zn-Mg-Cu alloy. Previously, the interplay of chemistry and faceting was revealed for specific grain boundaries in well-defined bicrystals, which are realistically not encountered in engineering alloys.

Interplay of chemistry and faceting at grain boundaries in a multicomponent engineering Al-alloy

 In this project, we reveal the subtle yet important interplay between the faceting of grain boundaries and their chemical decoration with solutes in an engineering Al-Zn-Mg-Cu alloy. Previously, the interplay of chemistry and faceting was revealed for specific grain boundaries in well-defined bicrystals, which are realistically not encountered in engineering alloys. [more]
In this project we investigate tensile fracture mechanisms of medium Mn steels with two typical types of microstructures. One group consists of ferrite (α) plus austenite (γ) and the other one of a layered structure with an austenite-ferrite constituent and δ-ferrite.


Damage and fracture mechanisms in multiphase medium Mn steels

In this project we investigate tensile fracture mechanisms of medium Mn steels with two typical types of microstructures. One group consists of ferrite (α) plus austenite (γ) and the other one of a layered structure with an austenite-ferrite constituent and δ-ferrite. [more]
In this project we show that medium Mn steels with an austenite matrix (austenite fraction ~65 vol%) can exhibit pronounced discontinuous yielding. A combination of multiple in situ characterization techniques from macroscopic (a few millimeters) down to nanoscopic scale (below 100 nm) is utilized to investigate this phenomenon.

Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite-ferrite interface

In this project we show that medium Mn steels with an austenite matrix (austenite fraction ~65 vol%) can exhibit pronounced discontinuous yielding. A combination of multiple in situ characterization techniques from macroscopic (a few millimeters) down to nanoscopic scale (below 100 nm) is utilized to investigate this phenomenon. [more]
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].

Confined spinodal fluctuations at crystal defects evidenced in Fe-Mn alloys

In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2]. [more]

Finished Projects

For this project three ferrite/martensite dual-phase steels varying in the ferrite grain size (12.4, 2.4 and 1.2 um) but with the same martensite content (30 vol.%) were produced by large-strain warm deformation at different deformation temperatures, followed by intercritical annealing.

Deformation and fracture in fine- and ultrafine-grained ferrite-martensite dual-phase steels

For this project three ferrite/martensite dual-phase steels varying in the ferrite grain size (12.4, 2.4 and 1.2 um) but with the same martensite content (30 vol.%) were produced by large-strain warm deformation at different deformation temperatures, followed by intercritical annealing. [more]
For this project two plain carbon steels with varying manganese content (0.87 wt pct and 1.63 wt pct) were refined to approximately 1 um by large strain warm deformation and subsequently subjected to intercritical annealing to produce an ultrafine grained ferrite/martensite dual-phase steel. The influence of the Mn content on microstructure evolution is studied by scanning electron microscopy (SEM).

Effect of Manganese on Grain Size Stability and Hardenability in Ultrafine-Grained Dual-Phase Steels

For this project two plain carbon steels with varying manganese content (0.87 wt pct and 1.63 wt pct) were refined to approximately 1 um by large strain warm deformation and subsequently subjected to intercritical annealing to produce an ultrafine grained ferrite/martensite dual-phase steel. The influence of the Mn content on microstructure evolution is studied by scanning electron microscopy (SEM). [more]
Austenite reversion during tempering of a Fe-13.6Cr-0.44C (wt.%) martensite results in an ultra-high strength ferritic stainless steel with excellent ductility.

Advanced design of a ductile 2 GPa Fe-Cr-C martensitic-austenitic steel by nanoscale austenite reversion through partitioning, segregation, and kinetic freezing

Austenite reversion during tempering of a Fe-13.6Cr-0.44C (wt.%) martensite results in an ultra-high strength ferritic stainless steel with excellent ductility. [more]
 
loading content
Go to Editor View