Sarfraz, A.; Posner, R.; Lange, M. M.; Lill, K. A.; Erbe, A.: Role of intermetallics and copper in the deposition of ZrO2-based conversion coatings on AA6014. Journal of the Electrochemical Society 161 (12), pp. C509 - C516 (2014)
Schneider, P.; Sigel, R.; Lange, M. M.; Beier, F.; Renner, F. U.; Erbe, A.: Activation and fluoride-assisted phosphating of aluminium silicon coated steel. ACS Applied Materials and Interfaces 5 (10), pp. 4224 - 4232 (2013)
Lange, M. M.; Borodin, S.; Renner, F. U.; Spiegel, M.: Grain boundary chemistry in nickel alloys applied in 700°C coal-power plant. High Temperature Corrosion - Gordon Research Seminar , New London, NH, USA (2013)
Lange, M. M.; Borodin, S.; Renner, F. U.; Spiegel, M.: Grain boundary chemistry in nickel alloys applied in 700°C coal-power plant. High Temperature Corrosion - Gordon Research Conference, New London, NH, USA (2013)
Lange, M. M.: The microstructural impact on high temperature corrosion in DMV 617 mod under coal-fired conditions. Dissertation, RWTH Aachen, Aachen, Germany (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Adding 30 to 50 at.% aluminum to iron results in single-phase alloys with an ordered bcc-based crystal structure, so-called B2-ordered FeAl. Within the extended composition range of this intermetallic phase, the mechanical behavior varies in a very particular way.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.