Sedighiani, K.; Traka, K.; Diehl, M.; Roters, F.; Sietsma, J.; Raabe, D.: Determination and validation of BCC crystal plasticity parameters for a wide range of temperatures and strain rates. 7th Conference on Recrystallization and Grain Growth, REX 2019, Ghent, Belgium (2019)
Diehl, M.; Roters, F.; Raabe, D.: Coupled Experimental-Computational Investigations of Grain Scale Mechanics in Complex Metallic Microstructures. 15th U.S. National Congress on Computational Mechanics, Ausrin, TX, USA (2019)
Han, F.; Diehl, M.; Roters, F.; Raabe, D.: Multi-scale modeling of plasticity. ICIAM 2019 - The 9th International Congress on Industrial and Applied Mathematics, Valencia, Spain (2019)
Liu, C.; Shanthraj, P.; Roters, F.; Raabe, D.: Phase-field/CALPHAD methods for multi-phase and multi-component microstructures. The 4th International Symposium on Phase Field Modelling in Materials Science (PF 19), Bochum, Germany (2019)
Raabe, D.: Metastable Nanostructured Metallic Alloy. The KAIST Lecture in Materials Science and Engineering 2019, Korea Advanced Institute of Science and Technology KAIST, Daejeon, Korea (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…
Grain boundaries (GBs) affect many macroscopic properties of materials. In the case of metals grain growth, Hall–Petch hardening, diffusion, and electrical conductivity, for example, are influenced or caused by GBs. The goal of this project is to investigate the different GB phases (also called complexions) that can occur in tilt boundaries of fcc…
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…