Michalik, A.; Paliwoda-Porebska, G.; Rohwerder, M.: Mechanism of corrosion protection by conducting polymers. 57th Annual Meeting of the International Society of Electrochemistry, Edinburgh, UK (2006)
Laaboudi, A.; Rohwerder, M.: Oxygen Reduction on Thiol SAM Modified Au(111). 209th Meeting of The Electrochemical Society, Denver, Colorado, USA (2006)
Rohwerder, M.; Stratmann, M.: Delamination of Polymer/metal Interfaces: On the Role of Electron Transfer Reactions at the Buried Interface. 209th Meeting of The Electrochemical Society, Denver, CO, USA (2006)
Rohwerder, M.: On the role of passive oxides at buried polymer/metal interfaces. The 9th International Symposium on the Passivation of Metals and Semiconductors, and the Properties of Thin Oxide Layers, Paris, France (2005)
Stempniewicz, M.; Rohwerder, M.; Marlow, F.: Release of dye molecules from mesostructured microparticles. 104th Bunsentagung, Frankfurt a. M., Germany (2005)
Rohwerder, M.: Delamination von polymeren Beschichtungen: Offene Fragen und neue Ansätze. 1. Korrosionsschutz-Symposium: Korrosionsschutz durch Beschichtungen in Theorie und Praxis, Schlosshotel Villa Rheinfels, St. Goar, Germany (2005)
Ehahoun, H.; Stratmann, M.; Rohwerder, M.: Kinetics of O2-reduction at model interfaces investigated with a scanning Kelvin Probe using an O2-insensitive Ag/AgCl/KCl – tip. ISE Annual Meeting, Thessaloniki, Greece (2004)
Rohwerder, M.; Hausbrand, R.; Stratmann, M.: The role of the electrode potential at the buried polymer/metal interface on electrochemically driven delamination: The case MgZn2. ISE Annual Meeting, Thessaloniki, Greece (2004)
Rohwerder, M.; Stratmann, M.: The effect of Oxygen Reduction on the Self-Assembly and Stability of Thiol Monolayer Films. 205th Meeting of the ECS, San Antonio, TX, USA (2004)
Frenznick, S.; Stratmann, M.; Rohwerder, M.: Galvanizing of Defined Model Samples: On the Road to a Fundamental Physical Understanding of Hot-Dip Galvanizing. GALVATECH, Chicago, USA (2004)
Rohwerder, M.; Hausbrand, R.; Stratmann, M.: Development of Zinc-Alloy Coatings with Inherent Delamination Stability for Organic Coatings. Galvatech '04, Chicago, IL, USA (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.