Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: A New Method to Study the Composition Dependence of Mechanical Properties of Laves. MRS Fall Meeting 2016, Boston, MA, USA (2016)
Šlapáková, M.; Liebscher, C.; Kumar, S.; Stein, F.: Deformation Mechanism of Single Phase C14 Laves Phase NbFe2 Studied by TEM. MRS Fall Meeting 2016, Boston, MA, USA (2016)
Stein, F.; Horiuchi, T.: Discontinuous Precipitation of the Complex Intermetallic Phase Nb2Co7 from Supersaturated Co Solid Solution. Thermec 2016, Graz, Austria (2016)
Stein, F.; Luo, W.; Li, X.; Palm, M.: Diffusion couples as a "new" method for material synthesis. 61. Metallkunde-Kolloquium - Werkstoffforschung für Wirtschaft und Gesellschaft, Lech am Arlberg, Austria (2015)
Li, X.; Scherf, A.; Heilmaier, M.; Stein, F.: Coarsening Kinetics of Lamellar FeAl + FeAl2 Microstructures in Al-rich Fe–Al Alloys. Intermetallics 2015, Educational Center Kloster Banz, Bad Staffelstein, Germany (2015)
Li, X.; Scherf, A.; Janda, D.; Heilmaier, M.; Stein, F.: Two-Phase Binary Fe–Al Alloys with Fine-Scaled Lamellar Microstructure and the Effect of Ternary Additions on Microstructure, Stability, and Mechanical Behavior. 123HiMAT-2015, Advanced High-Temperature Materials Technology for Sustainable and Reliable Power Engineering, Sapporo, Japan (2015)
Scherf, A.; Li, X.; Stein, F.; Heilmaier, M.: Creep Properties and Microstructure of Binary Fe–Al Alloys with a Fine-Scaled, Lamellar Microstructure. Intermetallics 2015, Educational Center Kloster Banz, Bad Staffelstein, Germany (2015)
Scherf, A.; Li, X.; Stein, F.; Heilmaier, M.: Creep Properties and Microstructure of Binary Fe-Al Alloys with a Fine-Scaled, Lamellar Microstructure. Creep 2015, 13th International Conference on Creep and Fracture of Engineering Materials and Structures, Toulouse, France (2015)
Stein, F.: Phase Diagrams and Phase Transformations. Intermetallics 2015 Conference, School on Thermodynamics of Intermetallics, Educational Center Kloster Banz, Staffelstein, Germany (2015)
Li, X.; Stein, F.; Scherf, A.; Janda, D.; Heilmaier, M.: Investigation of Fe–Al Based in situ Composites with Fine Lamellar Eutectoid Microstructure. MRS Fall Meeting 2014
, Boston, MA, USA (2014)
Stein, F.; He, C.: The Usefulness and Applicability of the Alkemade Theorem for the Determination of Ternary Phase Diagrams with Intermetallic Phases. TOFA 2014 – 14th Discussion Meeting on Thermodynamics of Alloys, Brno, Czech Republic (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…