Zhang, S.; Yu, Y.; Jung, C.; Mattlat, D. A.; Abdellaoui, L.; Scheu, C.: In situ STEM observation of thermoelectric materials under heating and biasing conditions. The 6th joint Sino-German workshop on advanced & correlative electron microscopy of catalysts, quantum phenomena & soft matter, Bad Honnef, Germany (2024)
Zhang, S.; Yu, Y.; Jung, C.; Wang, Z.; Mattlat, D. A.; Abdellaoui, L.; Scheu, C.: In situ microstructural observation and electrical transport measurements of PbTe thermoelectrics by transmission electron microscopy. International Conference on Thermoelectrics ICT, Krakow, Poland (2024)
Scheu, C.; Zhang, S.: Hematite for light induced water splitting – improving efficiency by tuning distribution of Sn dopants at the atomic scale. The International Symposium on Advanced Coatings for Energy – ISC4E 2023, Ben Guerir, Morocco (2023)
Zhang, S.: Electron microscopy: Resolution and imaging contrast. DMG/DGK-AK9 Summer School “Advanced methods for the characterization of applied materials”, MPI für Kohlenforschung, Mülheim (Ruhr), Germany (2023)
Zhang, S.; Kim, S.-H.; Mingers, A. M.; Gault, B.; Scheu, C.: Operando Study on the activation of hydrogen evolution electrocatalysts. NRF-DFG meeting “Electrodes for direct sea-water splitting and microstructure based stability analyses”, Korean Institute for Energy Research, Daejeon, South Korea (2023)
Jung, C.; Jang, K.; Zhang, S.; Bueno Villoro, R.; Choi, P.-P.; Scheu, C.: Sb-doping induced order to disorder transition enhances the thermal stability of NbCoSn1-xSbx half-Heusler semiconductors. The 20th International Microscopy Congress, PS-07.2. Microscopy of Semiconductor Materials and Devices, Busan, Republic of Korea (2023)
Zhang, S.; Yu, Y.; Jung, C.; Abdellaoui, L.; Scheu, C.: In situ TEM unveils dynamic doping behavior of thermoelectric materials – Microstructure and property evolution under heating and electric biasing. International Microscopy Conference IMC20, Busan, Korea (2023)
Zhang, S.; Kim, S.-H.; Mingers, A. M.; Gault, B.; Scheu, C.: Operando Study on the corrosion of photo-electrocatalysts. NRF-DFG meeting “Electrodes for direct sea-water splitting and microstructure based stability analyses”, Kangwon National University, Chuncheon-si, South Korea (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.