Bieler, T. R.; Crimp, M. A.; Ma, A.; Roters, F.; Raabe, D.: A Slip Interaction Based Measure of Damage Nucleation in Grain Boundaries. 3rd International Conference on Multiscale Materials Modeling, Freiburg, Germany (2006)
Zambaldi, C.; Roters, F.; Raabe, D.: Spherical indentation modeling for the investigation of primary recrystallization in a single-crystal nickel-base superalloy. Plasticity, Halifax, Canada (2006)
Zaafarani, N.; Raabe, D.; Singh, R. N.; Roters, F.; Zaefferer, S.; Zambaldi, C.: 3D EBSD characterization and crystal plasticity FE simulation of the texture and microstructure below a nanoindent in Cu. Plasticity Conference 2006, Halifax, Canada (2006)
Roters, F.: Mapping the crystal orientation distribution function to discrete orientations in crystal plasticity finite element forming simulations of bulk materials. International Conference on Aluminium Alloys ICAA10, Vancouver, Canada (2006)
Roters, F.; Ma, A.; Zaafarani, N.; Raabe, D.: Crystal plasticity FEM modeling at large scales and at small scales. GAMM annual meeting, Berlin, Germany (2006)
Zaafarani, N.; Raabe, D.; Singh, R. N.; Roters, F.: Three dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. DPG Frühjahrstagung, Dresden, Germany (2006)
Ma, A.; Roters, F.; Raabe, D.: A dislocation density based constitutive law for BCC materials in crystal plasticity FEM. 15th International Workshop on Computational Mechanics of Materials, MPI für Eisenforschung, Düsseldorf (2005)
Roters, F.: The 15th International Workshop on Computational Mechanics of Materials (IWCMM 15). The 15th International Workshop on Computational Mechanics of Materials (IWCMM 15), MPIE (2005)
Ma, A.; Roters, F.; Raabe, D.: A dislocation density based constitutive model for crystal plasticity FEM. 14th International Conference on Textures of Materials (ICOTOM 14), Leuven, Belgium (2005)
Roters, F.; Jeon-Haurand, H. S.; Tikhovskiy, I.; Raabe, D.: A Texture Evolution Study Using the Texture Component Crystal Plasticity FEM. 14th International Conference on Textures of Materials (ICOTOM 14), Leuven, Belgium (2005)
Ma, A.; Roters, F.; Raabe, D.: Introducing the Effect of Grain Boundaries into Crystal Plasticity FEM Using a Non Local Dislocation Density Based Constitutive Model. Theory and Application to FCC Bi-Crystals. Euromech Colloquium 463: Size dependent mechanics of materials, Groningen, Niederlande (2005)
Roters, F.: Development of a dislocation density based constitutive model for crystal plasticity FEM with special regard to grain boundaries. Institutsseminar, MPI für Mathematik in den Naturwissenschaften, Leipzig, Germany (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…
Here the focus lies on investigating the temperature dependent deformation of material interfaces down to the individual microstructural length-scales, such as grain/phase boundaries or hetero-interfaces, to understand brittle-ductile transitions in deformation and the role of chemistry or crystallography on it.
The goal of this project is to optimize the orientation mapping technique using four-dimensional scanning transmission electron microscopy (4D STEM) in conjunction with precession electron diffraction (PED). The development of complementary metal oxide semiconductor (CMOS)-based cameras has revolutionized the capabilities in data acquisition due to…