Nikolov, S.; Petrov, M.; Lymperakis, L.; Friák, M.; Sachs, C.; Fabritius, H.; Neugebauer, J.; Raabe, D.: Extremal stiffness of crustacean cuticle through hierarchical optimization: Theory, modeling, and experiment. 3rd International Conference on Mechanics of Biomaterials & Tissues, multiscale modeling of tissue mechanical properties, Clearwater Beach, FL, USA (2009)
Nikolov, S.; Sachs, C.; Fabritius, H.; Raabe, D.; Petrov, M.; Friák, M.; Neugebauer, J.: Modeling of the mechanical properties of lobster cuticle from ab initio to macroscale: How nature designs multifunctional composites with optimal properties. International Plasticity Conference 2009, Virgin Islands, USA (2009)
Petrov, M.; Friák, M.; Lymperakis, L.; Neugebauer, J.; Raabe, D.: Ground-state structure and elastic anisotropy of crystalline alpha-chitin: An ab-initio based conformational analysis. Materials Research Society meeting (MRS), Boston, MA, USA (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…