Lübke, A.; Loza, K.; Patnaik, R.; Enax, J.; Raabe, D.; Prymak, O.; Fabritius, H.-O.; Gaengler, P.; Epple, M.: Reply to the ‘Comments on “Dental lessons from past to present: ultrastructure and composition of teeth from plesiosaurs, dinosaurs, extinct and recent sharks”’ by H. Botella et al., RSC Adv., 2016, 6, 74384–74388. RSC Advances 7 (11), pp. 6215 - 6222 (2017)
Prymak, O.; Stein, F.: The Ternary Cr–Al–Nb Phase Diagram: Experimental Investigations of Isothermal Sections at 1150, 1300 and 1450 °C. Journal of Alloys and Compounds 513, pp. 378 - 386 (2012)
Prymak, O.; Stein, F.: Solidification and High-Temperature Phase Equilibria in the Fe–Al-rich Part of the Fe–Al–Nb System. Intermetallics 18 (7), pp. 1322 - 1326 (2010)
Prymak, O.; Stein, F.; Kerkau, A.; Ormeci, A.; Kreiner, G.; Frommeyer, G.; Raabe, D.: Phase equilibria in the ternary Nb–Cr–Al system and site occupation in the hexagonal C14 Laves phase Nb(AlxCr1–x)2. In: Materials Research Society Symposium Proceedings, pp. 499 - 504 (Ed. Proceedings, M. S.). Materials Research Society Symposium. (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…