Khorashadizadeh, A.; Raabe, D.; Winning, M.; Pippan, R.: Recrystallization and Grain Growth in Ultrafine-Grained Materials Produced by High Pressure Torsion. Advanced Engineering Materials 13, pp. 245 - 250 (2011)
Khorashadizadeh, A.; Raabe, D.; Zaefferer, S.; Rohrer, G. S.; Rollett, A. D.; Winning, M.: Five-Parameter Grain Boundary Analysis by 3D EBSD of an Ultra Fine Grained CuZr Alloy Processed by Equal Channel Angular Pressing. Advanced Engineering Materials 13, pp. 237 - 244 (2011)
Winning, M.; Raabe, D.: Fast, Physically-Based Algorithms for Online Calculations of Texture and Anisotropy during Fabrication of Steel Sheets. Advanced Engineering Materials 12, pp. 1206 - 1211 (2010)
Winning, M.; Brahme, A.; Raabe, D.: Prediction of cold rolling textures of steels using an artificial neural network. Computational Materials Science 46, pp. 800 - 804 (2009)
Khorashadizadeh, A.; Winning, M.; Raabe, D.: 3D tomographic EBSD measurements of heavily deformed ultra fine grained Cu-0.17wt%Zr obtained from ECAP. Materials Science Forum 584-586, pp. 434 - 439 (2008)
Molodova, X.; Gottstein, G.; Winning, M.; Hellmig, R. J.: Thermal stability of ECAP processed pure Copper. Materials Science & Engineering A 460 / 461, pp. 204 - 213 (2007)
Molodova, X.; Khorashadizadeh, A.; Gottstein, G.; Winning, M.; Hellmig, R. J.: Thermal Stability of ECAP Processed Pure Cu and CuZr. Inter. Journal of Materials Research 98, pp. 269 - 275 (2007)
Winning, M.; Raabe, D.; Brahme, A.: A texture component model for predicting recrystallization textures. Materials Science Forum 558 / 559, pp. 1035 - 1042 (2007)
Eisenlohr, P.; Winning, M.; Blum, W.: Migration of subgrain boundaries under stress in bi- and multi-granular structures. Physica Status Solidi 200 (2), pp. 339 - 345 (2003)
Zaefferer, S.; Kuo, J. C.; Zhao, Z.; Winning, M.; Raabe, D.: On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals. Acta Materialia 51, pp. 4719 - 4735 (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.