Neugebauer, J.: Ab Initio Based Modeling of Engineering Materials: From a Predictive Thermodynamic Description to Tailored Mechanical Properties. Materials Science and Engineering, Nürnberg, Germany (2008)
von Pezold, J.; Neugebauer, J.: Hydrogen-enhanced local plasticity - An atomistic study. Materials Science and Engineering 2008, Nuernberg, Germany (2008)
Ismer, L.; Ireta, J.; Neugebauer, J.: First principles study of vibrational and thermodynamic properties of the secondary structure of proteins. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Körmann, F.; Dick, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: The free energy of bcc iron: Integrated ab initio derivation of vibrational, electronic, and magnetic contributions. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Effect of strain and polarization on the electronic properties of 2-, 1- and 0-dimensional semiconductor nanostructures. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Todorova, M.; Neugebauer, J.: Towards an ab initio description of corrosion. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Atomistic modeling of the strain-induced interaction between carbon atoms in Fe-C solid solution. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Uijttewaal, M.; Hickel, T.; Neugebauer, J.: Phase transformations of Ni2MnGa shape memory alloy from first principles: The (pre-)martensitic transition by phonons and magnons, Soft mode phase transformation by phonon couplings. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Friák, M.; Sander, B.; Ma, D.; Raabe, D.; Neugebauer, J.: Theory-guided Design of Ti-binaries for Biomedical Applications. 11th International Symposium on Physics of Materials (ISPMA-11), Prague, Czech Republic (2008)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Atomistic modeling of the strain-induced interaction between carbon atoms in Fe-C solid solution. XVII International Materials Research Congress 2008, Cancun, Mexico (2008)
Grabowski, B.; Ismer, L.; Hickel, T.; Neugebauer, J.: Ab initio up to the melting point: An efficient thermodynamic integration scheme. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Hickel, T.; Uijttewaal, M.; Grabowski, B.; Neugebauer, J.: First principles determination of phase transitions in magnetic shape memory alloys. XXI Congress of the International Union of Crystallography, Osaka, Japan (2008)
Neugebauer, J.: Materials design based on ab initio thermodynamics and kinetics. XVII International Materials Research Congress 2008, Cancun, Mexico (2008)
Friák, M.; Sander, B.; Ma, D.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Ab-initio based multi-scale approaches to the elasticity of polycrystals. Mid-term COST conference on Multiscale Modeling of Materials, COST action 19, Brno, Czech Republic (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…