Knezevic, M.; Ma, D.; Raabe, D.; Kalidindi, S. R.; Friák, M.; Neugebauer, J.: Application of Spectral Methods for Anisotropy Design of Ti-Nb Polycrystals for Biomedical Applications based on ab Initio Elastic Single Crystal Constants and Fast Fourier Homogenization. MRS Fall Conference 2008, Boston, MA, USA (2008)
Petrov, M.; Friák, M.; Lymperakis, L.; Neugebauer, J.; Raabe, D.: Ground-state structure and elastic anisotropy of crystalline alpha-chitin: An ab-initio based conformational analysis. Materials Research Society meeting (MRS), Boston, MA, USA (2008)
Neugebauer, J.: Ab initio based modeling of engineering materials: From a predictive thermodynamic description to tailored mechanical properties. Multiscale Materials Modeling 2008, Tallahassee, FL, USA (2008)
Udyansky, A.; Bugaev, V.; von Pezold, J.; Friák, M.; Neugebauer, J.: Modeling of the strain-induced interaction between carbon atoms in Fe-C solid solution using embedded atom method potential. Contemporary Problems of Metal Physics, Kiev, Ukraine (2008)
Neugebauer, J.: Design of engineering materials based on ab initio thermodynamics and kinetics. Materials Science and Technology 2008, Pittsburgh, PA, USA (2008)
Lymperakis, L.; Neugebauer, J.: Ab initio study of Thermodynamics and adatom kinetics on non-polar GaN surfaces: Consequences on the growth morphology and the formation of nanowires. International Workshop on Nitride Semiconductors, Montreux, Switzerland (2008)
Ma, A.; Friák, M.; Neugebauer, J.; Raabe, D.: Ab initio based design of alloys. MS&T'08, Symposium: Discovery and Optimization of Materials Through Computational Design, David Lawrence Convention Center, Pittsburgh, PA, USA (2008)
Counts, W. A.; Ma, D.; Friák, M.; Neugebauer, J.; Raabe, D.: Multiscale design of aluminium alloys based on ab-initio methods. ICAA 11 – 11th International Conference on Aluminium Alloys 2008, Aachen, Germany (2008)
Lymperakis, L.; Neugebauer, J.: Growth simulations of non-polar GaN surfaces: Thermodynamics, kinetics and dopant incorporations. Bremen DFG Forschergruppe: Workshop in Riezlern, Reizlern, Austria (2008)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Modeling of electronic and optical properties of GaN/AlN quantum dots by using the k.p-method. Bremen DFG Forschergruppe: Workshop in Riezlern, Riezlern, Austria (2008)
Raabe, D.; Friak, M.; Neugebauer, J.; Counts, W. A.: Homogenization in Polycrystal Mechanics on the Basis of First Principles Simulations. IUTAM Symposium on Variational Concepts in Materials Mechanics, Ruhr-Universität Bochum, Germany (2008)
Dick, A.; Hickel, T.; Neugebauer, J.: First Principles Predictions of Mechanical Properties of FeMn-Alloys. Workshop des SFB761, Beilngries, Germany (2008)
Friák, M.; Neugebauer, J.: Ab initio study on elastic properties of Fe3Al-based alloys. Materials Science and Engineering (MSE'08), Nürnberg, Germany (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…