Elkot, M.; Sun, B.; Ponge, D.; Raabe, D.: Tackling hydrogen embrittlement sensitivity and poor low-temperature toughness of austenitic high manganese lightweight steel. Thermec 2023 - International Conference on PROCESSING & MANUFACTURING OF ADVANCED MATERIALS, Vienna, Austria (2023)
Elkot, M.; Sun, B.; Ponge, D.; Raabe, D.: The deceit of steel strength ductility diagrams: A case study on high manganese lightweight steel. 7th International Conference of Engineering Against Failure ICEAF 2023, Spetses, Greece (2023)
Elkot, M.; Sun, B.; Zhou, X.; Ponge, D.; Raabe, D.: Grain boundary κ-carbides in high manganese lightweight steel: degradation assessment and potential solutions. 5th International High Manganese Steel Conference 2022, online, Linz, Austria (2022)
Liu, C.; Roters, F.; Raabe, D.: Finite strain crystal plasticity-phase field modeling of deformation twinning and dislocation slip interaction in hexagonal materials. 18th European Mechanics of Materials Conference, online, Oxford, UK (2022)
Ma, Y.; Villanova, J.; Requena, G.; Raabe, D.: Understanding the physical-chemical phenomena in green steel production using synchrotron X-ray techniques. European Synchrotron Radiation Facility User Meeting 2022, Online (2022)
Liu, C.; Roters, F.; Raabe, D.: Finite strain crystal plasticity-phase field modeling of twin, dislocation, and grain boundary interactions. 19th International Conference on Strength of Materials ICSMA, Metz, France (2022)
Liu, C.; Shanthraj, P.; Davis, A.; Fellowes, J.; Prangnell, P.; Raabe, D.: Chemo-mechanical phase-field model for two-sublattice phases: phase precipitation in Al–Zn–Mg–Cu alloys. 19th International Conference on Strength of Materials ICSMA, Metz, France (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…