Dick, A.; Körmann, F.; Abbasi, A.; Hickel, T.; Neugebauer, J.: Towards an ab initio based understanding of deformation mechanisms in high-manganese Steels. 1st Int. Conf. on High Manganese Steels, Seoul, South Korea (2011)
Zhu, L.-F.; Friák, M.; Dick, A.; Udyansky, A.; Neugebauer, J.: First principles study of elastic properties of eutectic Ti-Fe alloys up to their mechanical stability limits. DPG Spring Meeting 2011, Dresden, Germany (2011)
Sandlöbes, S.; Friák, M.; Dick, A.; Zaefferer, S.; Pei, Z.; Neugebauer, J.; Raabe, D.: Combining ab initio calculations and high-resolution experiments to understand advanced Mg alloys. German-Korean workshop on the “Production and industrial applications of semi-finished Mg products”, Irsee, Germany (2011)
Dick, A.: Towards an ab initio based understanding of deformation mechanisms in high-manganese steels. International scientific seminar “Ab initio Description of Iron and Steel: Mechanical properties”, Ringberg, Germany (2010)
Körmann, F.; Dick, A.; Hickel, T.; Neugebauer, J.: Integrating finite temperature magnetism into ab initio free energy calculations. ICAMS Scientific Retreat, Akademie Biggesee, Attendorn, Germany (2010)
Friák, M.; Zhu, L.-F.; Dick, A.; Hickel, T.; Neugebauer, J.: First-principles study of the Ti-Fe eutectic system. Seminar at Institute of Physics of Materials at Czech Academy of Sciences, Brno, Czech Republic (2010)
Dick, A.; Hickel, T.; Neugebauer, J.: Ab Initio Interfacial Austenite/Martensite Energies for Accurate Deformation Mechanism Maps in High-Mn Steels. Materials Science and Engineering 2010, Darmstadt, Germany (2010)
Hickel, T.; Körmann, F.; Dick, A.; Neugebauer, J.: The thermodynamics of Fe-based compounds derived from first principles. Materials Science and Engineering 2010, Darmstadt, Germany (2010)
Hickel, T.; Dick, A.; Körmann, F.; Neugebauer, J.: Ab initio Bestimmung thermodynamischer Eigenschaften des Legierungssystems Fe-Mn-C. Sitzung FA Computersimulation der DGM, Aachen, Germany (2010)
Udyansky, A.; von Pezold, J.; Dick, A.; Neugebauer, J.: Atomistic study of martensite stability in dilute Fe-based solid solutions. PTM 2010 (Solid-Solid Phase Transformations in Inorganic Materials), Avignon, France (2010)
Körmann, F.; Dick, A.; Hickel, T.; Neugebauer, J.: First principles concepts to determine the heat capacity of Fe-based alloys. Calphad XXXIX, Jeju Island, South Korea (2010)
Udyansky, A.; von Pezold, J.; Dick, A.; Neugebauer, J.: Impurity ordering in iron: An ab initio based multi-scale approach. GraCoS Workshop (Carbon and Nitrogen in Steels: Measurement, Phase Transformations and Mechanical Properties), Rouen, France (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
Adding 30 to 50 at.% aluminum to iron results in single-phase alloys with an ordered bcc-based crystal structure, so-called B2-ordered FeAl. Within the extended composition range of this intermetallic phase, the mechanical behavior varies in a very particular way.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…