Springer, H.; Tasan, C. C.; Raabe, D.: A novel roll-bonding methodology for the cross-scale analysis of phase properties and interactions in multiphase structural materials. International Journal of Materials Research 106 (1), pp. 3 - 14 (2015)
Tasan, C. C.; Hoefnagels, J. P.M.; Diehl, M.; Yan, D.; Roters, F.; Raabe, D.: Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations. International Journal of Plasticity 63, pp. 198 - 210 (2014)
Wang, M.; Tasan, C. C.; Ponge, D.; Kostka, A.; Raabe, D.: Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels. Acta Materialia 79, pp. 268 - 281 (2014)
Yao, M.; Pradeep, K. G.; Tasan, C. C.; Raabe, D.: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Materialia 72–73, pp. 5 - 8 (2014)
Tasan, C. C.; Hoefnagels, J. P. M.; Dekkers, E. C. A.; Geers, M. G. D.: Multi-Axial Deformation Setup for Microscopic Testing of Sheet Metal to Fracture. Experimental Mechanics 52 (7), pp. 669 - 678 (2012)
Tasan, C. C.; Hoefnagels, J. P. M.; Geers, M.G. D.: Identification of the continuum damage parameter: An experimental challenge in modeling damage evolution. Acta Materialia 60 (8), pp. 3581 - 3589 (2012)
Tasan, C. C.; Hoefnagels, J. P. M.; Geers, M. G. D.: A micropillar compression methodology for ductile damage quantification. Metallurgical and Materials Transactions A 43 (3), pp. 796 - 801 (2012)
Tasan, C. C.; Hoefnagels, J.P.M.; Geers, M.G.D.: Microstructural Banding Effects Clarified Through Micrographic Digital Image Correlation. Scripta Materialia 62 (11), pp. 835 - 838 (2010)
Tasan, C. C.; Hoefnagels, J.P.M.; Geers, M.G.D.: A brittle-fracture methodology for three-dimensional visualization of ductile deformation micromechanisms. Scripta Materialia 61 (1), pp. 20 - 23 (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.