Güder, Ü.; Yavaş, A.; Demirel Gökalp, Z.; Cem Tasan, C.; Raabe, D.: From Crucible Steel to the Battlefield: Investigating a Unique Early Medieval Arrowhead from Anatolia. Metallography, Microstructure, and Analysis 14 (4), pp. 663 - 674 (2025)
Wang, M.; Jiang, M.; Tasan, C. C.: Manganese micro-segregation governed austenite re-reversion and its mechanical effects. Scripta Materialia 179, pp. 75 - 79 (2020)
Hoefnagels, J. P.M.; Du, C.; Tasan, C. C.: Laser-induced toughening inhibits cut-edge failure in multi-phase steel. Scripta Materialia 177, pp. 79 - 85 (2020)
Zhang, Z.; Koyama, M.; Wang, M.; Tasan, C. C.; Noguchi, H.: Fatigue Resistance of Laminated and Non-laminated TRIP-maraging Steels: Crack Roughness vs Tensile Strength. Metallurgical and Materials Transactions A 50 (3), pp. 1142 - 1145 (2019)
Khosravani, A.; Morsdorf, L.; Tasan, C. C.; Kalidindi, S. R.: Multiresolution mechanical characterization of hierarchical materials: Spherical nanoindentation on martensitic Fe–Ni–C steels. Acta Materialia 153, pp. 257 - 269 (2018)
Fujita, N.; Ishikawa, N.; Roters, F.; Tasan, C. C.; Raabe, D.: Experimental–numerical study on strain and stress partitioning in bainitic steels with martensite–austenite constituents. International Journal of Plasticity 104, pp. 39 - 53 (2018)
Koyama, M.; Ogawa, T.; Yan, D.; Matsumoto, Y.; Tasan, C. C.; Takai, K.; Tsuzaki, K.: Hydrogen desorption and cracking associated with martensitic transformation in Fe–Cr–Ni-Based austenitic steels with different carbon contents. International Journal of Hydrogen Energy 42 (42), pp. 26423 - 26435 (2017)
Zhang, J.; Tasan, C. C.; Lai, M.; Yan, D.; Raabe, D.: Partial recrystallization of gum metal to achieve enhanced strength and ductility. Acta Materialia 135, pp. 400 - 410 (2017)
Ogawa, T.; Koyama, M.; Tasan, C. C.; Tsuzaki, K.; Noguchi, H.: Effects of martensitic transformability and dynamic strain age hardenability on plasticity in metastable austenitic steels containing carbon. Journal of Materials Science: Materials in Electronics 52 (13), pp. 7868 - 7882 (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…