Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Computational study of interstitial ordering in bcc iron. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Zhu, L.-F.; Dick, A.; Friák, M.; Hickel, T.; Neugebauer, J.: First principles study of thermodynamic, structural and elastic properties of eutectic Ti-Fe alloys. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Elstnerová, P.; Friák, M.; Neugebauer, J.: Ab initio study of calcite substituted by Mg and P. Seminar talk at Masaryk University, Brno, Czech Republic (2009)
Elstnerová, P.; Friák, M.; Neugebauer, J.: Ab initio study of calcite substituted by Mg and P. Multiscale design modeling 2009, Brno, Czech Republic (2009)
Nikolov, S.; Petrov, M.; Lymperakis, L.; Friák, M.; Sachs, C.; Fabritius, H.; Neugebauer, J.; Raabe, D.: Extremal stiffness of crustacean cuticle through hierarchical optimization: Theory, modeling, and experiment. 3rd International Conference on Mechanics of Biomaterials & Tissues, multiscale modeling of tissue mechanical properties, Clearwater Beach, FL, USA (2009)
Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Ab initio Determined Fundamental Materials-design Limits in Mg–Li–X (X = Al, Si, Zn, Ca, Cu) Ternaries. Materials Research Society (MRS) meeting, Boston, MA, USA (2009)
Friak, M.; Raabe, D.; Neugebauer, J.: First-principles based multi-scale approaches to the elasticity of metallic polycrystals and hierarchical bio-composites. AICES meets MPIE workshop, Monschau, Germany (2009)
Elstnerová, P.; Friák, M.; Neugebauer, J.: Crustacean skeletal elements: Variations in the constructional morphology at different hierarchical levels. Seminar talk at Masaryk University, Brno, Czech Republic (2009)
Counts, W. A.; Friak, M.; Raabe, D.; Neugebauer, J.: Ab Initio Determined Materials-Design Limits in Ultra Light-Weight Mg-Li Alloys. 8th International Conference on Magnesium Alloys and their Applications, Weimar, Germany (2009)
Friak, M.: Ab-initio based multi-scale approaches to the elasticity of metallic polycrystals and hierarchical biocomposites. ICAMS seminar, Bochum, Germany (2009)
Friak, M.: Ab-initio based multi-scale approaches to the elasticity of metallic polycrystals and hierarchical bio-composites. Bauhaus University Weimar, Weimar, Germany (2009)
Ma, D.; Friák, M.; Raabe, D.; Neugebauer, J.: Multi-physical alloy approaches to solid solution strengthening of Al. 1st International Conference on Material Modelling, Dortmund, Germany (2009)
Ma, D.; Friák, M.; Raabe, D.; Neugebauer, J.: Investigation of solid solution strengthening by density functional theory. EUROMAT 2009, Glasgow, Scotland, UK (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The nano-structure of surfaces influences the interactions and reactions occurring on it, which has strong impacts for applications in diverse fields, such as wetting phenomena, electrochemistry or biotechnology. We study these nanoscale structures on functional interfaces by nano-spectroscopy. Furthermore we try to understand their influence on…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…