Vogel, D.; Hotař, A.; Blum, C.; Palm, M.; Renner, F. U.: Corrosion behaviour of Fe–Al(–X) alloys in steam. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys (FEAL 2009), Prague, Czech Republic (2009)
Lange, M. M.; Borodin, S.; Renner, F. U.; Spiegel, M.: Grain boundary chemistry in nickel alloys applied in 700°C coal-power plant. High Temperature Corrosion - Gordon Research Seminar , New London, NH, USA (2013)
Lange, M. M.; Borodin, S.; Renner, F. U.; Spiegel, M.: Grain boundary chemistry in nickel alloys applied in 700°C coal-power plant. High Temperature Corrosion - Gordon Research Conference, New London, NH, USA (2013)
Bach, P.; Seemayer, A.; Rütt, U.; Gutowski, O.; Renner, F. U.: Insertion and Extraction Mechanisms of Li in Al Model Electrodes Studied by in-situ XRD. 223th ECS Meeting, A1 - General Student Poster Session, Toronto, Canada (2013)
Lange, M. M.; Borodin, S.; Renner, F. U.; Spiegel, M.: Grain boundary chemistry in nickel alloys applied in 700°C coal-power plant. High Temperature Corrosion - Gordon Research Seminar , New London, NH, USA (2013)
Lange, M. M.; Borodin, S.; Renner, F. U.; Spiegel, M.: Grain boundary chemistry in nickel alloys applied in 700°C coal-power plant. High Temperature Corrosion - Gordon Research Conference, New London, NH, USA (2013)
Renner, F. U.; Ankah, G.; Pareek, A.: Surface Morphology Changes during Dealloying. Pacific Rim Meetin on Electrochemical and Solid-State Science PRIME 2012 / ECS 222, Honolulu, HI, USA (2012)
Bach, P.; Seemayer, A.; Renner, F. U.: Analysis of electrochemically inserted lithium in metal electrodes. 220th ECS Meeting, A1 - General Student Poster Session, Boston, MA, USA (2011)
Bach, P.; Seemayer, A.; Renner, F. U.: Analysis of electrochemically inserted lithium in metal electrodes. International Summer School on Surfaces and Interfaces in Correlated Oxides, Vancouver, BC, Canada (2011)
Bach, P.; Seemayer, A.; Renner, F. U.: Analysis of electrochemically inserted lithium in metal electrodes. DPG Frühjahrstagung der Sektion AMOP (SAMOP) und der Sektion Kondensierte Materie (SKM), 75. Jahrestagung der DPG, Dresden, Germany (2011)
Vogel, D.; Swaminathan, S.; Rohwerder, M.; Renner, F. U.: Possibilities for high-temperature corrosion at MPIE. International Symposium on High-temperature Oxidation and Corrosion, Zushi, Japan (2010)
Vogel, D.; Renner, F. U.; Rohwerder, M.; Stratmann, M.: Novel setups pushing the limits of high-temperature reaction studies. Gordon Research Conference on High Temperature Corrosion, New London, NH, USA (2010)
Schneider, P.; Renner, F. U.; Beier, F.; Erbe, A.: Phosphate crystallization on zinc and steel surfaces. 109th Annual meeting of the German Bunsen Society of Physical Chemistry (Bunsentagung), Bielefeld, Germany (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.