Folger, A.: The Influence of Post-Growth Heat Treatments and Etching on the Nanostructure and Properties of Rutile TiO2 Nanowires. Dissertation, RWTH Aachen, Aachen, Germany (2017)
Gleich, S.: Investigation of Sputtered Mo2BC Hard Coatings: Correlation of Nanostructure and Mechanical Properties. Dissertation, RWTH Aachen, Aachen, Germany (2017)
Stechmann, G.: A Study on the Microstructure Formation Mechanisms and Functional Properties of CdTe Thin Film Solar Cells Using Correlative Electron Microscopy and Atomistic Simulations. Dissertation, RWTH Aachen, Aachen, Germany (2017)
Neddermann, P.: Martensitic Stainless Steel: Evolution of Austenite during Low Temperature Annealing and Design of Press Hardening Alloys. Dissertation, RWTH Aachen, Aachen, Germany (2016)
Zhang, J.: Microstructure design via site-specific control of recrystallization and nano-precipitation. Dissertation, RWTH Aachen, Aachen, Germany (2016)
Szczepaniak, A.: Investigation of intermetallic layer formation in dependence of process parameters during the thermal joining of aluminium with steel. Dissertation, RWTH Aachen, Aachen, Germany (2016)
Takahashi, T.: On the growth and mechanical properties of non-oxide perovskites and the spontaneous growth of soft metal nanowhiskers. Dissertation, RWTH Aachen, Aachen, Germany (2013)
Archie, F. M. F.: Nanostructured High-Mn Steels by High Pressure Torsion: Microstructure-Mechanical Property Relations. Master, Materials Chemistry, Lehrstuhl für Werkstoffchemie, RWTH Aachen, Aachen, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…