Duarte, M. J.; Harzer, T. P.; Dehm, G.: Towards ultra-strong alloys: thermal stability and diffusion kinetics of thin films by in-situ TEM. CALPHAD XLVII Conference, International Conference on Computer Coupling of Phase Diagrams and Thermochemistry, Querétaro, Mexico (2018)
Herbig, M.; Parra, C.D.; Lu, W.; Toji, Y.; Liebscher, C.; Li, Y.; Goto, S.; Dehm, G.; Raabe, D.: Where does the carbon atom go in steel? – Insights gained by correlative transmission electron microscopy and atom probe tomography. International Symposium on Steel Science 2017, Kyoto, Japan (2017)
Hieke, S. W.; Willinger, M. G.; Wang, Z.-J.; Richter, G.; Dehm, G.; Scheu, C.: Evolution of faceted voids and fingering instabilities in a model thin film system - Insights by in-situ environmental scanning electron microscopy. Symposium - In situ Microscopy with Electrons, X‐rays and Scanning Probes, Universität Erlangen‐Nürnberg, Erlangen, Germany (2017)
Brinckmann, S.; Kirchlechner, C.; Dehm, G.; Matoy, K.: Using simulations to investigate the apparent fracture toughness of microcantilevers. Nanomechanical Testing in Materials Research and Development VI, Dubrovnik, Croatia (2017)
Arigela, V. G.; Kirchlechner, C.; Dehm, G.: Setup of a microscale high temperature loading rig for micro-fracture mechanics. Euromat 2017, Thessaloniki, Greece (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…