Hieke, S. W.; Willinger, M. G.; Wang, Z.-J.; Richter, G.; Dehm, G.; Scheu, C.: Evolution of faceted voids and fingering instabilities in a model thin film system - Insights by in-situ environmental scanning electron microscopy. Symposium - In situ Microscopy with Electrons, X‐rays and Scanning Probes, Universität Erlangen‐Nürnberg, Erlangen, Germany (2017)
Scheu, C.: Thermal stability and phase transformation of nanostructured Nb3O7(OH) photocatalyst. Material Science & Technology (MST), Salt Lake City, UT, USA (2017)
Zhang, S.; Diehl, L.; Lotsch, B. V.; Scheu, C.: In-situ heating study on the growth of NiOx nanoparticles on photocatalytic supports. International GRK 1896 Satellite Symposium “In Situ Microscopy with Electrons, X-rays and Scanning Probes, Erlangen, Germany (2017)
Betzler, S. B.; Scheu, C.: Nb3O7(OH) – a promising candidate for photocatalyst: synthesis, nanostructure and functionality. International Conference on Functional Nanomaterials and Nanodevices, Budapest, Hungary (2017)
Garzón-Manjón, A.; Zahn, G.; Kuchshaus, C.; Ludwig, A.; Scheu, C.: Observation of the Structural Transformation of Multinary Nanoparticles by In-situ Transmission Electron Microscopy. 13th Multinational Congress on Microscopy (MCM2017), Rovinj, Croatia (2017)
Scheu, C.: Structural and functional properties of Nb3O7(OH) nanoarrays and their modification via doping and thermal annealing. Talk at Institut für Werkstofftechnik, Technische Universität Ilmenau, Ilmenau, Gemany (2017)
Scheu, C.: Interface structure of Kappa-Carbides in high Mn Steels. 3 Phase, Interface, Component Systems (PICS), Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Marseille, France (2017)
Raabe, D.; Gault, B.; Yao, M.; Scheu, C.; Liebscher, C.; Herbig, M.: Correlated and simulated electron microscopy and atom probe tomography. Workshop on Possibilities and Limitations of Quantitative Materials Modeling and Characterization 2017, Bernkastel, Germany (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…