Brink, T.; Langenohl, L.; Ahmad, S.; Liebscher, C.; Dehm, G.: Atomistic Modeling of the Thermodynamics of Grain Boundaries in fcc Metals. 19th International Conference on Diffusion in Solids and Liquids, Crete, Greece (2023)
Dehm, G.: Grain boundary phases in metallic materials: Structure, stability and properties. MiFuN III - Microstructural Functionality at the Nanoscale, Venice, Italy (2023)
Dehm, G.: On the interplay between grain boundary complexions and chemical composition for fcc metals. Possibilities and Limitations of Quantitative Materials Modeling and Characterization 2023, Bernkastel-Kues, Germany (2023)
Brink, T.; Bhat, M. K.; Best, J. P.; Dehm, G.: Grain-boundary segregation effects on bicrystal Cu pillar compression. DPG Spring Meeting, Dresden, Germany (2023)
Kanjilal, A.; Rehman, U.; Best, J. P.; Dehm, G.: Microscale fracture behavior of Laves phases in the Mg–Ca–Al ternary alloy system. 86. Annual Meeting of DPG and DPG-Frühjahrstagung (DPG Spring Meeting) of the Matter and Cosmos Section (SMuK), Dresden, Germany (2023)
Kanjilal, A.; Rehman, U.; Best, J. P.; Dehm, G.: Microscale fracture behavior of Laves phases in the Mg–Ca–Al ternary alloy system. DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM), Dresden, Germany (2023)
Pemma, S.; Janisch, R.; Dehm, G.; Brink, T.: Deformation mechanism of complexions in a Cu grain boundary under shear. FEMS EUROMAT 2023, Frankfurt am Main, Germany (2023)
Pemma, S.; Janisch, R.; Dehm, G.; Brink, T.: Disconnection activation in complexions of a Cu grain boundary under shear. 19th International Conference on Diffusion in Solids and Liquids (DSL-2023), Heraklion, Greece (2023)
Brognara, A.; Best, J. P.; Djemia, P.; Faurie, D.; Dehm, G.; Ghidelli, M.: Effect of composition and nanolayering on mechanical properties of Zr100-xCux thin film metallic glasses. Talk at Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
The goal of this project is to develop an environmental chamber for mechanical testing setups, which will enable mechanical metrology of different microarchitectures such as micropillars and microlattices, as a function of temperature, humidity and gaseous environment.