Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: The effect of grain size and grain orientation on deformation twinning in a Fe–22 wt.% Mn–0.6 wt.% C TWIP steel. Materials Science and Engineering A 527, pp. 3552 - 3560 (2010)
Sandim, M. J. R.; Sandim, H. R. Z.; Zaefferer, S.; Raabe, D.; Awaji, S.; Watanabe, K.: Electron backscatter diffraction study of Nb3Sn superconducting multifilamentary wire. Scripta Materialia 62 (2), pp. 59 - 62 (2010)
Demir, E.; Raabe, D.; Zaafarani, N.; Zaefferer, S.: Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. Acta Materialia 57, pp. 559 - 569 (2009)
Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope. Scripta Materialia 61, pp. 737 - 740 (2009)
Imlau, J.; Bleck, W.; Zaefferer, S.: Comparison of damage development in dependence of the local microstructure in low alloyed Al-TRIP-steels, IF steel and a DP steel. Int. J. Materials Research 100, pp. 584 - 593 (2009)
Sato, H.; Zaefferer, S.: A study on the formation mechanisms of butterfly-type martensite in Fe–30% Ni alloy using EBSD-based orientation microscopy. Acta Materialia 57 (6), pp. 1931 - 1937 (2009)
Sato, H.; Zaefferer, S.; Watanabe, Y.: In-situ Observation of Butterfly-type Martensite in Fe-30mass%Ni Alloy during Tensile Test Using High-resolution EBSD. ISIJ International 49, pp. 1784 - 1791 (2009)
Schestakow, I.; Yi, S.; Zaefferer, S.: Twinning-related microstructural evolution during hot rolling and subsequent annealing of pure magnesium. Materials Science & Engineering A 516, pp. 58 - 64 (2009)
Wu, G.; Zaefferer, S.: Advances in TEM orientation microscopy by combination of dark-field conical scanning and improved image matching. Ultramicroscopy 109, pp. 1317 - 1325 (2009)
Zambaldi, C.; Zaefferer, S.; Wright, S. I.: Characterization of order domains in γ-TiAl by orientation microscopy based on electron backscatter diffraction. Journal of Applied Crystallography 42, pp. 1092 - 1101 (2009)
Bastos, A.; Zaefferer, S.; Raabe, D.: Three-dimensional EBSD study on the relationship between triple junctions and columnar grains in electrodeposited Co–Ni films. Journal of Microscopy 230, pp. 487 - 498 (2008)
Frommert, M.; Zobrist, C.; Lahn, L.; Böttcher, A.; Raabe, D.; Zaefferer, S.: Texture measurement of grain-oriented electrical steels after secondary recrystallization. Journal of Magnetism and Magnetic Materials 320, pp. e657 - e660 (2008)
Liu, T.; Raabe, D.; Zaefferer, S.: A 3D tomographic EBSD analysis of a CVD diamond thin film. Science and Technology of Advanced Materials 9, 035013 (2008)
Schmücker, M.; Mechnich, P.; Zaefferer, S.; Schneider, H.: Water vapor corrosion of mullite: Single crystals versus polycrystalline ceramics. Journal of the European Ceramic Society 28, pp. 425 - 429 (2008)
Zaefferer, S.; Romano, P.; Friedel, F.: EBSD as a tool to identify and quantify bainite and ferrite in low alloyed Al-TRIP steels. Journal of Microscopy 230, pp. 499 - 508 (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…