Todorova, M.: Selective stabilization of polar oxide surfaces in electrochemical environment. Workshop: The Electrode Potential in Electrochemistry - A Challenge for Electronic Structure Theory Calculations, Schloß Reisensburg, Günzburg, Germany (2017)
Todorova, M.: Free energy sampling for electrochemical systems. Workshop II: Stochastic Sampling and Accelerated Time Dynamics on Multidimensional Surfaces, IPAM, UCLA, Los Angeles, CA, USA (2017)
Todorova, M.: Ab-initio modelling of electrochemical processes: Challenges and insights. Workshop: Fundamental Electrochemistry: Theory Meets Experiment, Leiden, The Netherlands (2017)
Todorova, M.: From semiconductor defect chemistry to electrochemistry: Insight into corrosion mechanisms from ab initio concepts. 57 Sanibel Symposium, St. Simon Island, GA, USA (2017)
Todorova, M.: From semiconductor defect chemistry to electrochemistry: Gaining new insights from computational physics tools. ICCP10 Conference , Macao, China (2017)
Todorova, M.: Oxide stability and defect chemistry in an electrochemical environment: an ab initio perspective. Workshop 2016 der DFG-Forschergruppe 1376 “Elementary reaction steps in electrocatalysis: Theory meets experiment“, Reisensburg, Günzburg, Germany (2016)
Surendralal, S.; Todorova, M.; Neugebauer, J.: Automated calculations for charged point defects in MgO and α-Fe2O3. DPG-Frühjahrstagung 2016, Regensburg, Germany (2016)
Vatti, A. K.; Todorova, M.; Neugebauer, J.: Ab initio Determination of Formation Energies and Charge Transfer Levels of Charged Ions in Water. APS 2016, Baltimore, MD, USA (2016)
Vatti, A. K.; Todorova, M.; Neugebauer, J.: Formation Energy of Ions in Water using ab-initio Molecular Dynamics. DPG Frühjahrstagung 2016, Regensburg, Germany (2016)
Todorova, M.: Electrochemistry from the perspective of semiconductor defect chemistry: New tools and insights. Psi-k Conference, San Sebastian, Spain (2015)
Vatti, A. K.; Todorova, M.; Neugebauer, J.: Formation Energy of Halide ions (Cl/Br/I) in water from ab-initio Molecular Dyna. Psi-k 2015 Conference, San Sebastián, Spain (2015)
Todorova, M.: Thermodynamic stability of bulk oxides and their defects in an electrochemical environment. 5th Sino-German Symposium, Changchun, China (2015)
Todorova, M.: From semiconductor defect chemistry to electrochemisty: New tools and insights. Workshop “Enabling methods for materials innovation: From quantum to mesoscale”, Gainesville, FL, USA (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…