Pizzagalli, L.; Dehm, G.; Thomas, O.: Structure and dynamics V: Mechanical properties at small scales. Condensed Matter in Paris: Mini-colloquium 32, Paris, France (2014)
Dehm, G.: From idealized bi-crystals towards applied polycrystals: Plastic deformation in small dimensions. 2013 MRS Fall Meeting, Boston, MA, USA (2013)
Dehm, G.: Structure and Micromechanics of Materials. Materialwissenschaftliches Kolloquium ICAMS und Institut für Werkstoffe, RUB, Bochum, Germany (2013)
Dehm, G.: Probing deformation phenomena at small length scales. ECI on Nanomechanical Testing in Materials Research and Development IV, Olhão, Portugal (2013)
Dehm, G.: Atomic resolution interface study of VN and Cu films on MgO using Cs corrected TEM. Microscopy Conference MC 2013, Regensburg, Germany (2013)
Dehm, G.: Struktur und Nano-/Mikromechanik von Materialien. Vorstandssitzung des Stahlinstituts VDEh und der Wirtschaftsvereinigung Stahl, Düsseldorf, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…
Grain boundaries (GBs) affect many macroscopic properties of materials. In the case of metals grain growth, Hall–Petch hardening, diffusion, and electrical conductivity, for example, are influenced or caused by GBs. The goal of this project is to investigate the different GB phases (also called complexions) that can occur in tilt boundaries of fcc…