Haley, D.; Merzlikin, S. V.; Choi, P.-P.; Raabe, D.: Atom probe tomography observation of hydrogen in high-Mn steel and silver charged via an electrolytic route. International Journal of Hydrogen Energy 39 (23), pp. 12221 - 12229 (2014)
Gutiérrez-Urrutia, I.; Raabe, D.: High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides. Materials Science and Technology 30 (9), pp. 1099 - 1104 (2014)
Mandal, S.; Pradeep, K. G.; Zaefferer, S.; Raabe, D.: A novel approach to measure grain boundary segregation in bulk polycrystalline materials in dependence of the boundaries’ five rotational degrees of freedom. Scripta Materialia 81, pp. 16 - 19 (2014)
Reuber, J. C.; Eisenlohr, P.; Roters, F.; Raabe, D.: Dislocation density distribution around an indent in single-crystalline nickel: Comparing nonlocal crystal plasticity finite-element predictions with experiments. Acta Materialia 71, pp. 333 - 348 (2014)
Pierce, D. T.; Jiménez, J. A.; Bentley, J.; Raabe, D.: The influence of manganese content on the stacking fault and austenite/epsilon-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory. Acta Materialia 68, pp. 238 - 253 (2014)
Pradeep, K. G.; Herzer, G.; Choi, P.; Raabe, D.: Atom probe tomography study of ultrahigh nanocrystallization rates in FeSiNbBCu soft magnetic amorphous alloys on rapid annealing. Acta Materialia 68, pp. 295 - 309 (2014)
He, D.; Zhu, J.; Zaefferer, S.; Raabe, D.: Effect of retained beta layer on slip transmission in Ti–6Al–2Zr–1Mo–1V near alpha titanium alloy during tensile deformation at room temperature. Materials and Design 56, pp. 937 - 942 (2014)
Zhu, M.; Sun, D.; Pan, S.; Zhang, Q.; Raabe, D.: Modelling of dendritic growth during alloy solidification under natural convection. Modelling and Simulation in Materials Science and Engineering 22 (3), 034006 (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.