Cojocaru-Mirédin, O.; Choi, P.; Schwarz, T.; Würz, R.; Raabe, D.: Exploring the internal interfaces at the atomic-scale in CIGS thin-films solar cells. DPG-Frühjahrstagung Modern, Atom Probe Tomography, TU Berlin, Germany (2012)
Cojocaru-Mirédin, O.; Schwarz, T.; Choi, P.; Würz, R.; Raabe, D.: Exploring the internal interfaces at the atomic-scale in thin-film solar cells. Seminar Talk at Helmholtz Zentrum Berlin (HZB), Berlin, Germany (2012)
Li, Y. J.; Choi, P.; Goto, S.; Borchers, C.; Raabe, D.; Kirchheim, R.: Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire. 53rd International Field Emission Symposium (IFES), Tascaloosa, AL, USA (2012)
Choi, P.: Characterization of advanced functional and structural materials using Atom Probe Tomography. Inauguration symposium for the Atom Probe facilities ETH Zürich, Zürich, Switzerland (2011)
Cojocaru-Mirédin, O.; Choi, P.; Würz, R.; Abou-Ras, D.; Raabe, D.: Explorer les interfaces à l’échelle atomique dans les cellules photovoltaïques CIGSe. Commissariat à l’Energie Atomique et aux Energies Alternatives, Grenoble, France (2011)
Herbig, M.; Li, Y.; Choi, P.: Atomic Analysis of Concentration Changes at Interfaces by Atom Probe Tomography. SFB 761 Doktorandenseminar, RWTH Aachen, Germany (2011)
Cojocaru-Mirédin, O.; Choi, P.; Abou-Ras, D.; Wuerz, R.; Liu, T.; Schmidt, S. S.; Caballero, R.; Raabe, D.: Characterization of internal interfaces in Cu(In,Ga)Se2 thin-film solar cells using Atom Probe Tomography. Euromat 2011, Montpellier, France (2011)
Choi, P.: Study of local chemical gradients in advanced precipitation hardened steel using atom probe tomography. THERMEC 2011, Québec City, QC, Canada (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
The structure of grain boundaries (GBs) is dependent on the crystallographic structure of the material, orientation of the neighbouring grains, composition of material and temperature. The abovementioned conditions set a specific structure of the GB which dictates several properties of the materials, e.g. mechanical behaviour, diffusion, and…
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.