Hamilton, J.; Gianotti, S.; Fischer, J.; Della Fara, G.; Impergre, A.; De Vecchi, F.; AbuAlia, M.; Fischer, A.; Markovics, A.; Wimmer, M.: Electrophoretic Deposition of Gentamicin Into Titania Nanotubes Prevents Evidence of Infection in a Mouse Model of Periprosthetic Joint Infection. Journal of Orthopaedic Research (2025)
Wittrock, A.; Heermant, S.; Beckmann, C.; Wimmer, M.; Fischer, A.; Aßmann, M.; Debus, J.: Protein-metal interactions due to fretting corrosion at the taper junction of hip implants: An in vitro investigation using Raman spectroscopy. Acta Biomaterialia 189, pp. 621 - 632 (2024)
Fara, G. D.; Markovics, A.; Radice, S.; Hamiton, J. L.; Chiesa, R.; Sturm, A.; Angenendt, K.; Fischer, A.; Wimmer, M. A.: Electrophoretic deposition of gentamicin and chitosan into titanium nanotubes to target periprosthetic joint infection. Journal of Biomedical Materials Research Part B-Applied Biomaterials 111 (9), pp. 1697 - 1704 (2023)
Fischer, A.: Wear and Repassivation Rates of Orthopedic Metal Implants in Simulated Healthy and Inflammatory Synovial Fluids. World Tribology Congress 2022, Lyon, France (2022)
Fischer, A.: Ultra-Mild Fretting Wear – A different angle. University of Leeds, School of Mechanical Engineering, Fretting Focus Group Seminar, Leeds, UK (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…