Friák, M.; Zhu, L.-F.; Dick, A.; Hickel, T.; Neugebauer, J.: First-principles study of the Ti-Fe eutectic system. Seminar at Institute of Physics of Materials at Czech Academy of Sciences, Brno, Czech Republic (2010)
Kim, O.; Friák, M.; Neugebauer, J.: Ab initio analysis of the carbon solubility limits in various iron allotropes. DPG Frühjahrstagung 2010, Regensburg, Germany (2010)
Zhu, L.-F.; Dick, A.; Friák, M.; Hickel, T.; Neugebauer, J.: First principles study of thermodynamic, structural and elastic properties of eutectic Ti-Fe alloys. DPG Spring Meeting 2010, Regensburg, Germany (2010)
Zhu, L.-F.; Dick, A.; Friák, M.; Hickel, T.; Neugebauer, J.: First principles study of thermodynamic, structural and elastic properties of eutectic Ti–Fe alloys. March meeting of the American Physical Society (APS), Portland, OR, USA (2010)
Friák, M.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Fundamental Materials-Design Limits in Ultra Light-Weight Mg-Li Alloys Determined from Quantum-Mechanical Calculations. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
Friák, M.; Hubert, J.; Emmerich, H.; Schlieter, A.; Kuehn, U.; Eckert, J.; Neugebauer, J.: Ab Initio Determination of Phase-Field Parameters Needed for Scale-Bridging Studies of Nucleation and Microstructure Formation in the Ti-Fe Eutectic System. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
Friák, M.; Legut, D.; Sob, M.: Ab Initio Study of Extreme Loading Conditions in Transition-Metal Disilicides with the C40 Structure. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
Schlieter, A.; Kuehn, U.; Friák, M.; Hubert, J.; Emmerich, H.; Neugebauer, J.; Eckert, J.: Experimental Investigations of the Ti-Fe-Eutectic System Needed for the Further Understanding of the Microstructural Evolution in an Eutectic Alloy at Different Cooling Rates. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…