Neugebauer, J.: The role of hydrogen-hydrogen interaction in understanding H embrittlement: An ab initio guided multiscale approach. Hydrogen Conference, London, UK (2014)
Neugebauer, J.: Ab initio based design of structural materials: Status and challenges. Expertenpanel Computer Simulation of Material Structures and Properties, Schott AG , Mainz, Germany (2014)
Zhang, X.; Hickel, T.; Rogal, J.; Drautz, R.; Neugebauer, J.: Atomistic origin of structural modulations in Fe ultrathin film and impact for structural transformations in Fe–C alloys. ADIS Workshop 2014, Ringberg, Germany (2014)
Neugebauer, J.: Computational coarse-graining in configuration space as basis for a predictive ab initio thermodynamics. EPSRC Symposium, Warwick, London, UK (2013)
Körmann, F.; Grabowski, B.; Palumbo, M.; Fries, S. G.; Hickel, T.; Neugebauer, J.: Strong and weak magnetic coupling in chromium. ICAMS Advanced Discussions - Current Developments, Ruhr-Universität-Bochum, Bochum, Germany (2013)
Grabowski, B.; Glensk, A.; Korbmacher, D.; Huang, L.; Körmann, F.; Hickel, T.; Neugebauer, J.: First principles at finite temperatures: New approaches and massively parallel computations. CMSI International Symposium 2013: Extending the power of computational materials sciences with K-computer, Ito International Research Center, University of Tokyo, Japan (2013)
Hickel, T.; Nazarov, R.; Neugebauer, J.: Aspekte der Wasserstoffversprödung von Stählen: Verständnisgewinn durch quantenmechanische Simulationen. AKE Workshop, DECHEMA, Frankfurt a. M, Germany (2013)
Dey, P.; Nazarov, R.; Friák, M.; Hickel, T.; Neugebauer, J.: kappa-carbides as precipitates in austenitic steels: Ab initio study of structural, magnetic and Interface properties. EUROMAT 2013, Sevilla, Spain (2013)
Neugebauer, J.: Ab initio based multiscale modeling of structural materials: From a predictive thermodynamic description to tailored mechanical properties. CECAM Conference, Platja d’Aro, Spain (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…