Biedermann, P. U.; Torres, E.; Laaboudi, L.; Isik-Uppenkamp, S.; Rohwerder, M.; Blumenau, A. T.: Cathodic Delamination by a Combined Computational and Experimental Approach: The Aklylthiol/Gold Model System. Multiscale Material Modeling of Condensed Matter, MMM2007, St. Feliu de Guixols, Spain (2007)
Fenster, J. C.; Rohwerder, M.; Hassel, A. W.: Intensity Modulated Photo Electrochemistry of Laser Irradiated Semiconductors. 6th International Symposium on Electrochemical Micro & Nanosystem Technologies, Bonn, Germany (2006)
Park, E.; Hüning, B.; Borodin, S.; Rohwerder, M.; Spiegel, M.: Initial oxidation of Fe-Cr alloys: In situ STM amd ex-situ SEM studies. 6th International Conference on the Microscopy of Oxidation, Birmingham, UK (2005)
Satori, H.; Hassel, A. W.; Rohwerder, M.; Stratmann, M.: Finite Element Simulation of the Cathodic Delamination Process of Coatings on Metal Surfaces. 55th Meeting of the International Society of Electrochemistry, Thessaloniki, Greece (2004)
Paliwoda-Porebska, G.; Michalik, A.; Rohwerder, M.: Conducting polymer coatings for corrosion protection: Pros and cons. Gordon Research Conference on Aqueous Corrosion, New London, NH, USA (2004)
Baumert, B.; Stratmann, M.; Rohwerder, M.: Formability of Ultra-Thin Plasma-Polymer Films Deposited on Metal Sheet: Mesoscopic and Nanoscopic Aspects of Defect Formation. Symposium on Thin Films - Stresses and Mechanical Properties X held at the 2003 MRS Fall Meeting, Boston, MA, USA (2003)
Ehahoun, H.; Stratmann, M.; Rohwerder, M.: Charged Langmuir-Blodgett Films on a metallic Surface: Composition and Structure of the Interface. ISE2002, Düsseldorf, Germany (2002)
van der Kloet, J.; Hassel, A. W.; Rohwerder, M.; Stratmann, M.: Understanding the Role of Copper in FFC on aluminium alloys. 53rd Meeting of the International Society of Electrochemistry, Düsseldorf, Germany (2002)
Hausbrand, R.; Grundmeier, G.; Stratmann, M.; Rohwerder, M.: Design of materials with improved delamination behaviour: The system zinc-magnesium. NH Gordon Conference on Aqueous Corrosion, New London, NH, USA (2002)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.