Zhang, J.; Morsdorf, L.; Tasan, C. C.: Multi-probe microstructure tracking during heat treatment without an in-situ setup: Case studies on martensitic steel, dual phase steel and β-Ti alloy. Materials Characterization 111, pp. 137 - 146 (2016)
Pradeep, K. G.; Tasan, C. C.; Yao, M.; Deng, Y.; Springer, H.; Raabe, D.: Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 648, pp. 183 - 192 (2015)
Wang, M.; Tasan, C. C.; Koyama, M.; Ponge, D.; Raabe, D.: Enhancing Hydrogen Embrittlement Resistance of Lath Martensite by Introducing Nano-Films of Interlath Austenite. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 46 (9), pp. 3797 - 3802 (2015)
Zhang, J.; Tasan, C. C.; Lai, M.; Zhang, J.; Raabe, D.: Damage resistance in gum metal through cold work-induced microstructural heterogeneity. Journal of Materials Science 50 (17), pp. 5694 - 5708 (2015)
Morsdorf, L.; Tasan, C. C.; Ponge, D.; Raabe, D.: 3D structural and atomic-scale analysis of lath martensite: Effect of the transformation sequence. Acta Materialia 95, pp. 366 - 377 (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.